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SUMMARY

Fluorescent proteins are commonly used to label
cells across organisms, but the unmodified forms
cannot control biological activities. Using GFP-bind-
ing proteins derived from Camelid antibodies, we co-
opted GFP as a scaffold for inducing formation of
biologically active complexes, developing a library
of hybrid transcription factors that control gene
expression only in the presence of GFP or its deriva-
tives. The modular design allows for variation in key
properties such as DNA specificity, transcriptional
potency, and drug dependency. Production of GFP
controlled cell-specific gene expression and facili-
tated functional perturbations in the mouse retina
and brain. Further, retrofitting existing transgenic
GFP mouse and zebrafish lines for GFP-dependent
transcription enabled applications such as optoge-
netic probing of neural circuits. This work establishes
GFP as amultifunctional scaffold and opens the door
to selective manipulation of diverse GFP-labeled
cells across transgenic lines. This approach may
also be extended to exploit other intracellular
products as cell-specific scaffolds in multicellular
organisms.
INTRODUCTION

Studies of multicellular organisms would be greatly facilitated

by the ability to manipulate the activities of any genes within

specific tissues or cell types. This is challenging to achieve in

tissues with diverse cell types, such as the nervous system

(Masland, 2004). To label and provide genetic access to diverse

cell types, much effort has been devoted to generating trans-

genic organisms in which transgenes are placed under the con-
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trol of large genomic fragments or endogenous gene loci.

Transgenic lines expressing driver genes such as transcription

factors or site-specific recombinases in specific cell populations

can then be used to control the expression of genes in

responder cassettes. However, the utility of individual lines is

limited by a transgene’s functional abilities; reporter lines

expressing fluorescent proteins and histochemical enzymes

are useful for labeling cells but cannot currently be used to con-

trol biological activities. To replace transgenes driven by the

same cis-regulatory elements requires generation of additional

transgenic lines. Such a procedure can be costly and lengthy

for organisms such as the mouse. Thus, a key to conducting

efficient and wide-ranging studies on existing and future model

organisms is to increase the versatility of transgenic resources.

Owing to their ease of detection, GFP and its derivatives

(Tsien, 1998) have become commonmarkers of gene expression

(Chalfie et al., 1994) across model organisms. Notably, thou-

sands of transgenic GFP lines have been generated for the

mouse (Gong et al., 2003). This growing and important resource

reveals the expression pattern of many genes and provides

strains in which GFP selectively labels many cell types of interest

(http://www.gensat.org/index.html; Siegert et al., 2009). Trans-

genic GFP lines have enabled applications such as cell-type-

specific transcriptome profiling, as well as targeted anatomical

and physiological analysis (Huang et al., 2003; Siegert et al.,

2012). However, functional manipulation of GFP-labeled cell

types often requires the use of driver lines such as those that

express Cre, which currently exist in limited numbers.

A system converting GFP expression into desired molecular

outputs would enable existing and future transgenic GFP lines

to be used directly for gene manipulation in specific cell types.

Synthetic RNA devices have been engineered to convert the

presence of an intracellular protein into gene expression output

(Culler et al., 2010). Although promising, protein-responsive

RNA devices await application in animals (Chang et al., 2012).

Meanwhile, artificially derived binding proteins, herein including

antibodies and unrelated proteins with ideal structures for

evolving target recognition (Wurch et al., 2012), are being used
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Figure 1. In Vitro Screen Used to Identify

Functional GBP Pairs for the GFP-Depen-

dent Transcription System

(A) Schematic of GFP-dependent transcription

system. DBD, DNA-binding domain; AD, acti-

vation domain; UAS, upstream activating

sequence.

(B) Strategy for making DBD-GBP (DBDG) or AD-

GBP (ADG) fusion constructs used in the screen

for T-DDOGs. All genes were controlled by the

CAG promoter in pCAG vector.

(C) Schematic of typical in vitro luciferase screen

for functional GBP-fusion combinations capable

of inducing GFP-dependent transcription. See

also Table S1.
intracellularly to target proteins in cells and organisms. Thus far,

these reagents are used for target-centric purposes such as pro-

tein interference (Jobling et al., 2003), degradation (Caussinus

et al., 2012), and modulation (Kirchhofer et al., 2010). Artificially

derived binding proteins could possibly be a powerful platform

to co-opt intracellular proteins as cell-specific signals that con-

trol synthetic circuits, without modifications to the target protein

or reliance on the target protein’s natural interactions or

functions.

We explored whether artificially derived binding proteins can

confer GFP with the ability to regulate genes. GFP seems rela-

tively inert in many heterologous systems; it is freely diffusible

in the cytoplasm, can enter the nucleus, confers low cytotox-

icity, and has few interactions with host proteins (Trinkle-

Mulcahy et al., 2008). The development of GFP-binding proteins

(GBPs) from Camelid antibodies (Kirchhofer et al., 2010) has

made possible the construction of GBP-fusion proteins non-

covalently linking GFP to a variety of proteins in living cells

(Caussinus et al., 2012). These reagents, termed nanobodies,

are single-chain antigen-binding domains that are relatively

small in size (�300–400 bp) and can be easily expressed in living

cells (Rothbauer et al., 2006). Given the availability of multiple

GBPs, we reasoned that GFP might be used as a scaffold to

organize the formation of biologically active complexes. In one

scheme, GFP would act like a small-molecule ‘‘dimerizer,’’

bridging the association of distinct modular domains or protein

fragments to reconstitute useful activities such as transcription

and recombination (Jullien et al., 2003; Pollock and Clackson,

2002).

Here, we identified pairs of GBPs that can recruit tethered

proteins onto the GFP scaffold, providing the means by which

GFP-inducible systems can be built. We developed a GFP-

dependent transcription system with these reagents, enabling

control of any target gene for functional studies across tissues

and organisms. The modular design of the transcription system
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allowed for straightforward and predict-

able changes to critical features such

as DNA binding specificity, transcrip-

tional potency, and drug dependency.

Our work extends the functionality of

GFP into the regulatory realm, thus open-

ing the door to selective manipulation of
GFP-labeled cells across transgenic GFP lines and establishing

components for the design of synthetic circuits.

RESULTS

Design and Isolation of GFP-Dependent Transcription
Factors
In order to use GFP as a dimerizer, one has to identify GBP pairs

that can bind to GFP at the same time. Suitable GBP pairs could

then bring together fusion protein partners on the GFP scaffold.

We obtained six GBPs for this purpose (Kirchhofer et al., 2010).

Several GBPs were reported to bind additively to a preformed

GFP-GBP1 complex when tested as purified proteins in vitro

(Kirchhofer et al., 2010). However, it was unclear whether any

of the identified pairs could co-occupy GFP, tolerate the addition

of fusion partners, and induce the formation of biologically active

complexes in cells. Furthermore, many possible GBP pair-wise

combinations had not been tested for their ability to co-occupy

GFP. To address these issues, we performed an in vitro reporter

screen for GBP pairs that could induce the formation of an active

transcription factor (Figure 1 and Extended Experimental Proce-

dures). The Gal4 DNA-binding domain (DBD) and VP16 activa-

tion domain (AD) (Sadowski et al., 1988) were separately fused

to GBPs in various configurations and placed under control of

the ubiquitous CMV early enhancer/chicken b actin (CAG) pro-

moter (Niwa et al., 1991) (Figure 1B). DBD-GBP (DBDG) and

AD-GBP (ADG) fusion constructs were screened in pair-wise

combinations for GFP-dependent activation of an upstream acti-

vating sequence-regulated luciferase (UAS-luc2) reporter in

293T cells. Functional DBDG/ADG pairs will be referred to as

transcription devices dependent on GFP (T-DDOG). T-DDOGs

employing GBP1+6 or GBP2+7 consistently gave the strongest

reporter induction (Figures 1C, 2, and S1 available online) and

became the focus of this study. To specify DBDG+ADG combi-

nations, the DBD-GBPX fusion is listed in regular font, along with
, August 15, 2013 ª2013 Elsevier Inc. 929



Figure 2. Characterization of the GFP-

Dependent Transcription System

(A) Schematic of Gal4-based T-DDOGs.

(B)GFP-dependent activation ofUAS-luc2byGal4-

GBP6VP16-GBP1 and Gal4-GBP2VP16-GBP7. n = 9.

(C) Gal4-GBP6VP16-GBP1 strongly activated UAS-

tdT in the presence of GFP. Mutation of GBP1-

binding residues in GFP (GFPmG1) abolished tdT

activity. Scale bar, 10 mm.

(D) Specificity of T-DDOGs for different fluorescent

proteins. n = 9; *p < 0.001.

(E) Activity of Gal4-GBP6VP16-GBP1 in response

to a varying amount of transfected GFP

plasmids. The transfected DNA amount was

kept constant among conditions, with CAG-

mCherry (bottom) acting as a filler plasmid to

compensate for reduction in GFP (top) plasmids.

Panels show representative GFP and mCherry

fluorescence in single cells for each corre-

sponding data point below. n = 6. Plots are

mean ± SD.

See also Figures S1 and S2 and Table S2.
the AD-GBPX fusion in superscript, giving DBD-GBPXAD-GBPY.

Specific T-DDOG configurations are tabulated in Table S1.

Characterization of the GFP-Dependent Transcription
System In Vitro
The induced transcription output in 293T cells was found to be

dependent on all components of the system, as removal of

GFP, DBDG, or ADG from the transfection mixture resulted in

loss of reporter activity (Figures 2B and S1). Reporter induction

was further dependent on the ability of GBP to bind to GFP.

Based on the GBP1 + GFP crystal structure (Kirchhofer et al.,

2010), we mutated GFP residues expected to directly interact

with GBP1. One such variant, GFPmG1, carries the mutations

E143K and N147Q. Like GFP, GFPmG1 was localized to the

nucleus by the VP16AD-GBP7 fusion protein (Figure S2). How-

ever, unlike GFP, GFPmG1 was not localized to the nucleus by

the VP16AD-GBP1 fusion protein (Figure S2). In agreement

with this, GFPmG1 induced strong UAS-reporter in the presence

of Gal4-GBP2VP16-GBP7, but not Gal4-GBP6VP16-GBP1 (Figures

2B, 2C, and S1 and Table S2). These data confirm a requirement

for GFP-GBP interactions and suggest that GBP2 and GBP7 do

not depend critically on residue 143 or 147 for binding to GFP.

We also tested whether T-DDOG activity can be controlled by

the GFP derivatives cyano and yellow fluorescent proteins (CFP

and YFP) and the Discosoma-derived red fluorescent proteins

dsRed, mCherry, and tdTomato (tdT) (Shaner et al., 2005). CFP

and YFP induced Gal4-GBP2VP16-GBP7 activity to a similar extent

as GFP (Figure 2D). However, CFP had reduced ability to acti-

vate Gal4-GBP6VP16-GBP1. This was expected because CFP

differs fromGFP at the GBP1-interacting residue 147 (Rothbauer

et al., 2008). Also as expected, none of the red fluorescent

proteins could induce T-DDOG activity. In support of this, red

fluorescent proteins were diffusely distributed in the cell even

when T-DDOG components were clearly localizing GFP to the

nucleus (Figures 2C and 2E).
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To evaluate the effect of GFP level on T-DDOGactivity, we var-

ied the amount of GFP plasmid delivered to 293T cells and

examined UAS-luc2 expression in the presence of Gal4-

GBP6VP16-GBP1. The observations were consistent with those

reported for small-molecule dimerizers (Ho et al., 1996).

T-DDOG activity increased linearly with the amount of trans-

fected GFP until a certain point, beyond which further increases

in GFP led to reduction of activity. The reduced activity is likely

due to titration of T-DDOG components by GFP. Interestingly,

GFP was highly enriched in the nucleus at levels correlating

with the rising phase of the dosage curve but spread into the

cytoplasm at levels correlated with the declining phase of the

curve (Figure 2E).

Modularity of GFP-Dependent Transcription System
Permits Various Adjustments and Fine-Tuning
Transcription factors are highly modular (Luan et al., 2006; Sado-

wski et al., 1988). To exploit this feature for creating a diversity of

T-DDOGs with varying properties, we substituted the transcrip-

tion domains in our original GBP fusion library with other

commonly used ones and conducted additional in vitro screens.

Indeed, we were able expand and diversify the functional reper-

toire of T-DDOGs. T-DDOGs using the rTetR and LexA DBDs

activated reporters bearing their respective binding sequences,

tetO (included in tetracycline response element, TRE) and lex-

Aop, only when GFP was present (Figures 3A–3E) (Butala

et al., 2009; Schönig et al., 2010). The activities of rTetR-based

T-DDOGs were further found to depend on doxycycline levels

(Figure 3D). This drug dependency provides temporal control

for the system.

T-DDOGs can also be adjusted to alter their transcriptional po-

tency. The critical region for VP16AD function lies within a 12

amino acid peptide (VPmin) (Baron et al., 1997). We could pre-

dictably adjust the transcriptional activity of Gal4-GBP1AD-GBP6

by either varying the number of VPmin repeats or the number



Figure 3. T-DDOGs Are Highly Adjustable

(A–E) T-DDOGs based on LexA (A) and rTetR (C) DBDs. Doxycycline is ‘‘D’’ in (C). TRE includes seven tetO sequences (C). (B) LexA-GBP1VP16-GBP6 activated a

lexAop-luc2 reporter only in the presence of GFP. n = 9. (D) rTetR-GBP1VP16-GBP6 activated TRE-luc2 in a GFP- and doxycycline-dependent manner. n = 6–9. (E)

Similar results were seen with TRE-tdT. Doxycycline was used at 1 mg/ml. Images were taken 16 hr posttransfection.

(F and G) Tuning T-DDOGs with adjustable DBDs and ADs. (F) Increasing the number of GBP1 on Gal4DBD (n = 6–9) enhanced the transcriptional potency for

each ADG (n = 9). (G) Potency of p65AD compared to VP16AD. T-DDOGs used are Gal4-GBP1p65-GBP6 and Gal4-GBP1-BVP16-GBP6. n = 9. Scale bar, 100 mm.

Plots are mean ± SD.
of GBPs fused to the DBD (Figure 3F). We further isolated potent

T-DDOGs bearing the p65AD (Schmitz and Baeuerle, 1991), an

alternative to VP16AD in synthetic transcription systems (Rivera,

1998) (Figure 3G). Overall, we consistently isolated potent

T-DDOG variants using the GBP1+6 and GBP2+7 combinations,

suggesting that these pairs can effectively recruit various combi-

nations of fusion partners onto the GFP scaffold.

The GFP-Dependent Transcription System Can Be Used
in the Mouse for Cell-Specific Gene Regulation
To evaluate whether GFP can control the activity of T-DDOGs

in vivo, we used electroporation to introduce GFP, T-DDOGs,

and UAS-tdT into the murine retina. In our initial tests, we found

that overexpression of VP16AD caused mispositioning of rod

photoreceptors in the outer nuclear layer (ONL), likely due to

squelching of transcription machinery (Figure S3) (Gill and
Ptashne, 1988). To address this, we screened T-DDOGs with

alternative ADs described above for their effects in the retina

(Extended Experimental Procedures). We found that T-DDOGs

made with VPminx2 and p65 ADs induced little to no disruption

of normal rod positioning in the ONL (Figure S3). T-DDOGs

bearing p65ADs were used in all subsequent experiments.

We examined how T-DDOG activity would respond to

changes in GFP expression in the retina (Figures 4, S4, and S5

and Tables S3, S4, S5, and S6). WhenGFPwas expressed under

the broadly active CAG promoter, UAS-tdT was induced in GFP-

expressing cell types of both the ONL and inner nuclear layer

(INL) (Figure 4C). In contrast, little to no tdT signal was detected

in electroporated retinas when GFP was excluded (Figures 4C

and S4B). When the GFP expression pattern was manipulated

with promoters specifically active in rods (Rho-GFP) (Matsuda

and Cepko, 2004) or in ON bipolar cells (mGluR6-GFP) (Kim
Cell 154, 928–939, August 15, 2013 ª2013 Elsevier Inc. 931



Figure 4. GFP Controls the Spatial Expression of Genes In Vivo

(A) Schematic of experiment.

(B and C) (B) (Left) In electroporated retinas, CAG-GFP expresses in multiple cell types (green outline). Rho-GFP expresses in photoreceptors of the ONL (beige

fill). mGluR6-GFP expresses in ON bipolar cells of the INL (orange fill). GCL, ganglion cell layer. (Right) Anticipated UAS-tdT expression pattern aligned to left

diagram (C) Gal4-GBP1p65-GBP6 induces UAS-tdT only in the presence of GFP. n-bgal (magenta) is an electroporation marker.

(D and E) (Top) Rho-GFP andmGluR6-GFP induce tdT expression in rods and ON bipolar cells, respectively. (Bottom) tdT activation depends on ADG. Inset of (E)

shows GFP and tdT colocalization upon GFP intensity enhancement. Merge panels includes GFP, tdT, and DAPI channels. Scale bar, 20 mm.

See also Figures S3, S4, and S5 and Tables S3, S4, S5, and S6.
et al., 2008), the tdT expression pattern shifted accordingly and

was highly restricted to GFP-expressing cells (Figures 4D, 4E,

S4, and S5). Cells labeled by the electroporation marker, nuclear

b-galactosidase (n-bgal), but not GFP, did not express tdT (Fig-

ures 4C–4E). The efficiency of UAS-tdT activation, adjusting for

the probability of a cell receiving all four necessary components

for tdT activation, was �56%–93%. Despite the lack of GFP

signal amplification with antibodies, more than 90% to 95% of
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tdT-positive cells were positive for GFP expression in all cases

(Table S6). Unexpectedly, we detected faint mGluR6-GFP

expression in the ONL, which was not seen without the introduc-

tion of T-DDOGs. This low level of GFP induced little to no tdT

expression (Figures 4E and S4G). Follow-up experiments

indicated that Gal4-GBP1p65-GBP6, but not Gal4-GBP2p65-GBP7,

stabilized a low level of ONL GFP leaking from the mGluR6

promoter (see Supplemental Information). This suggests that



Figure 5. T-DDOGs Support Electrophysiological and Gene Perturbation Studies in the Central Nervous System

(A) Electroporation setup for neuronal recordings. Micrograph shows GFP in electroporated primary somatosensory cortex (S1).

(B–D) (B) Image of an acute brain slice from an electroporated mouse. Scale bar, 10 mm. Three categories of pyramidal layer 2/3 S1 neurons were recorded from

brain slices: nonfluorescent controls (gray), GFP+ (green), and GFP+/tdT+ (yellow). (C) Representative single current-clamp trace of action potentials in response

to a 50 pA, 1,000-ms-long step current injection. (D) Plots show action potential (AP) frequency upon current injection, as well as input resistance and membrane

capacitance of recorded cell classes. p > 0.5 for all comparisons (n = 8–10 neurons per condition). Plots show mean ± SEM.

(E–H) GFP-dependent excision ofOtx2fl/fl in the retina. (E) P0,Otx2fl/flmouse retina was electroporated with T-DDOG components and UAS-Cre and either CAG-

GFP or CAG-dsRed. (F–H) (F) Loss of OTX2 was confirmed by OTX2 immunostaining and (G and H) ectopic PAX6+ ONL cells. n = 10 stacks, 5 retinas per

electroporated condition. For nonelectroporated retina, n = 19 stacks, 10 retinas. Boxplots showmedian, maximum, and minimum values. Retinal stacks are 12-

mm-thick confocal images. *p < 0.001. n-bgal marks electroporated cells in (F). Scale bar, 5 mm in (F) and 20 mm in (G and H).

See also Figures S6 and S7 and Table S7.
Gal4-GBP1p65-GBP6 can reveal GFP expression that is normally

below the threshold of detection, whereas Gal4-GBP2p65-GBP7

allows for gene manipulation without revealing subdetection

levels of the nativeGFP expression pattern. Overall, these results

showed that GFP could be used as a cell-specific regulator of

T-DDOG activities in the mouse.

Utility of GFP-Dependent Transcription System for
Electrophysiological Studies and Gene Perturbations
To evaluate whether T-DDOGs altered the properties of neurons,

we electroporated GFP, T-DDOGs, and UAS-tdT into the

somatosensory cortex and examined various properties of

cortical neurons from �1.5-week-old mouse brains. We

compared pyramidal neurons expressing the full set of

T-DDOGs, showing bothGFP and tdT, with those that expressed

GFP alone, as well as with neighboring neurons that lacked fluo-
rescence (Figures 5A–5D). TdT signal was not observed in GFP-

negative neurons in the acute slices (data not shown). We found

that excitability and passive membrane properties were similar

for the three groups of neurons (Figures 5C–5D and Table S7)

and were consistent with intrinsic cellular properties previously

reported for cortical neurons of this age (Oswald and Reyes,

2008). Moreover, transducing T-DDOGs did not impact mor-

phological features such as dendritic spine density and length

(Figure S6 and Table S7). Thus, T-DDOGs are compatible with

electrophysiological assays and do not induce functional and

structural alterations in the developing brain, within the tested

time frame.

We further evaluated the utility of T-DDOGs for deriving biolog-

ical effects in developing tissues. Otx2 is a homeobox gene

that is necessary for photoreceptor specification in the retina

(Nishida et al., 2003). We used GFP to induce Cre-mediated
Cell 154, 928–939, August 15, 2013 ª2013 Elsevier Inc. 933



Figure 6. Retrofitting a Transgenic GFP

Mouse Line for GFP-Dependent Manipula-

tion of Gene Expression and Neural Circuit

Activities

(A) Tg(GUS8.4GFP) expresses GFP in type 7 cone

bipolar and rod bipolar cell types (green fill) of the

retina. Adopted schematic (Ghosh et al., 2004).

(B) Cryosection of electroporated Tg(GUS8.4GFP)

retina expressing Gal4-GBP2p65-GBP7 and UAS-

tdT. Scale bar, 20 mm.

(C) Type 7 (left) and rod bipolar (right) cell types

labeled by UAS-tdT. Anti-Calretinin (left) or anti-

Calbindin (right) staining identify specific layers of

the IPL. Scale bar, 10 mm. GFP was immuno-

stained in (B and C).

(D) Schematic of ChR2 experiment. Electro-

porated Tg(GUS8.4-GFP) retinas expressing 103

UAS-ChR2/H134R-mCherry and 53UAS-tdT

were analyzed for ChR2-mediated responses in

random GCL cells.

(E) Cumulative plot of ON responses in GCL cells.

Number of spikes counted during the first 300 ms

after stimulus onset, normalized to control (minus

APB). APB blocks ON responses originating from

photoreceptors. Plots are mean ± SEM (n = 4 per

condition).

(F) Spiking response of a GCL cell. Gray bar,

duration of light stimulus. Response to normal light

stimuli under control condition (top) or in the

presence of APB (middle). Light stimuli focused on

INL activate ChR2/H134R in the presence of APB

(lower).

(G andH) Top and side views of a neurobiotin-filled

(green) ganglion cell identified by light stimulation

of ChR2. Magenta lines indicate level of anti-Chat

bands (not shown). Scale bar, 20 mm.
excision of a floxed Otx2 allele (Otx2fl/fl) (Tian et al., 2002) in

mouse retinas ex vivo, with Cre being under the regulation of

the UAS promoter (Figures 5E–5H). This led to the loss of

OTX2 protein and the expected ectopic gain of PAX6 in the

ONL (Nishida et al., 2003) (Figures 5F and 5G). Conversely,

OTX2 levels were not significantly perturbed when GFP was re-

placed in the same experiment with dsRed (Figure S7). A slight

increase in PAX6+ ONL cells above background values was

likely due to leakage of UAS-Cre under experimental conditions.

Thus, T-DDOGswill be useful for converting GFP expression into

desired Cre-mediated genetic changes using a variety of existing

conditional alleles. Taken together, these results showed that

T-DDOGs are suitable for gene perturbations in the mouse and

are compatible with assays of cellular function.

Retrofitting Transgenic GFP Lines for GFP-Dependent
Manipulation of Genes and Neural Circuits
We examined whether T-DDOGs can retrofit transgenic GFP

lines for cell-specific gene manipulations. In the mouse retina,

visual information detected by rod and cone photoreceptors is

transmitted to bipolar cells and ultimately to ganglion cells.

Among bipolar cells, the rod bipolar cell type receives input

from rods, whereas many types of cone bipolar cells receive
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input primarily from cones. Currently, almost none of the cone

bipolar types can be singly isolated for genetic manipulation,

but multiple GFP lines do label subsets of bipolar types (Siegert

et al., 2009; Wässle et al., 2009). The a-gustducin-GFP trans-

genic line, Tg(GUS8.4-GFP) (Huang et al., 2003), expresses

GFP in type 7 cone bipolar cells and in rod bipolar cells (Fig-

ure 6A). Both cell types respond to light increments and are

called ON bipolar cells. Introduction of T-DDOGs and UAS-tdT

into Tg(GUS8.4-GFP) retinas resulted in tdT induction selectively

in these two cell types; identification was based on morphology

and axonal stratification in the inner plexiform layer (IPL), aligned

to the IPL markers Calbindin or Calretinin (Ghosh et al., 2004)

(Figures 6A–6C). Importantly, 98.9% of tdT+ cells were positive

for GFP expression (n = 91 cells, sampled from three retinas).

One exciting use of T-DDOGs would be to express light-

sensing ion channels in cell types labeled by transgenic GFP

for refined, optogenetic probing of neural circuits (Yizhar et al.,

2011). We explored this possibility by expressing a UAS-regu-

lated channelrhodopsin-2 (ChR2) variant, H134R (Nagel et al.,

2005) in Tg(GUS8.4-GFP)-labeled cells. We asked whether

light-driven ChR2 activation in GFP-labeled bipolar cells could

trigger downstream spiking responses in cells of the ganglion

cell layer (GCL) (Figure 6D). Electroporated retinas were



Figure 7. GFP-Dependent Transcription in Transgenic Zebrafish

Embryos from Tg(ubi-GFP) 3 wild-type outcrosses were microinjected with

DBDG-IRES-ADG (Gal4-GBP1p65-GBP6) RNA and UAS-tdT DNA at the one- to

two-cell stage and examined 1 to 2 days postfertilization. Images represent X

number of embryos out of Y number of injected embryos (X/Y), shown in white

font in tdT panel.
presented with two different light stimuli, and recordings were

performed on GCL cells. The first stimulus had low light intensity

and could evoke photoreceptor-mediated responses in GCL

cells but was not bright enough to activate ChR2. We used this

stimulus to select GCL cells that responded to both light incre-

ments and decrements (ON/OFF cells) (Figures 6E and 6F). We

next blocked synaptic communication between photoreceptors

and ON bipolar cells with 2-amino-4-phosphonobutyrate (APB)

(Slaughter and Miller, 1981) and presented the retina with a

brighter light stimulus that could activate ChR2. Because ON/

OFF GCL cells receive excitatory input from ON bipolar cells,

some of these cells should be connected via excitatory synapses

(directly or indirectly) to ChR2-expressing ON bipolar cells.

Indeed, the brighter stimulus elicited ON responses in some

recorded GCL cells in the presence of APB (Figures 6G and

6H). In contrast, recordings made from ON and ON/OFF GCL

cells in nonelectroporated regions of multiple retinas did not

reveal any response after the onset of the brighter stimulus in

the presence of APB (data not shown). Thus, ChR2 activation

in rod bipolar or ON cone bipolar cells was robust enough to

evoke neurotransmitter release from bipolar cells. Further, the

resulting current in GCL cells was large enough to reach spike

threshold and evoke spiking responses. These results showed

that T-DDOGs could turn on optogenetic tools in transgenic

GFP cells, permitting functional interrogation of neural circuits.

Utility of T-DDOGs in Zebrafish
In order to determine whether T-DDOGs can direct GFP-depen-

dent activities in other organisms, zebrafish were tested. Here,

T-DDOG components were translated from one bicistronic tran-

script by linking DBDG and ADG components with an internal

ribosome entry site (IRES) element. We microinjected RNAs

with this structure into ubiquitin-GFP transgenic (Tg(ubi-GFP)

(Mosimann et al., 2011) zebrafish embryos in a transient reporter

assay. Indeed, mosaic UAS-tdT expression was clearly induced

in 78 of 90 injected GFP+ embryos, but not in the 136 injected

GFP� embryos (Figure 7). This demonstrates the utility of this

system across species.
DISCUSSION

Fluorescent proteins are useful for illuminating cells and cellular

processes. Moreover, their apparent lack of connection to many

host protein networks makes them ideal scaffolds upon which

one can build synthetic complexes with desirable biological

activities. We demonstrated this principle here by using GFP to

induce formation of a hybrid transcription factor for gene regula-

tion purposes. The ability to use GFP for gene regulation now

enables one to experiment with many GFP-labeled cell types

without the need to create new cell-specific driver lines or to

discover new cell-specific promoters. This system can be used

for gene overexpression and gene deletion (Figures 4, 5, 6, and

7) and should be able to perform RNA interference (RNAi) knock-

down (Dickins et al., 2007; Dietzl et al., 2007). Activities of the

system can be controlled by GFP and its derivatives, but not

by red fluorescent proteins, thereby allowing the two types of

fluorescent proteins to be used independently in the same

experiment. Red fluorescent proteins can likely be used as scaf-

folds as well. In particular, monomeric variants such as mCherry

would be straightforward to use, as they do not undergo obligate

dimerization or tetramerization (Campbell et al., 2002).

Selective Control of GFP-Labeled Cells in Transgenic
GFP Organisms
The development and functions of complex multicellular organ-

isms depend upon the activities of a large number of distinct

cell types. To investigate these activities in the nervous system,

for example, many molecular tools have been developed for

anatomical circuit tracing, as well as physiological control (Wick-

ersham and Feinberg, 2012; Yizhar et al., 2011). However, the full

potential of these tools can only be realized when one can selec-

tively control them in any cell type in the nervous system. We

demonstrated that the diverse transgenic GFP lines available in

the mouse and other organisms would be useful for cell-specific

manipulation of genes and neural circuits. In the mouse, such

manipulations are performed primarily with recombinases such

as Cre. Although we anticipate that the number of cell-specific

Cre mouse lines will continually increase along with that of

GFP lines, each collection of lines will be independently useful

for some applications and will be complementary for other appli-

cations. As discussed below, the use of GFP is not necessarily

limited to transcriptional control. Nevertheless, gene regulatory

systems based on transcription factors differ fundamentally

from those based on recombination strategies. As recombina-

tion induces alterations to DNA sequences, this typically results

in permanent changes in gene expression. In contrast, transcrip-

tion systems are reversible. Recombination systems are espe-

cially useful for targeting cells with a common gene expression

history and for long-term transgene expression independent of

initial induction signals. However, the irreversibility of recombi-

nation events can result in the manipulation of undesired cell

types. This should be less of a problem for a transcription sys-

tem, as continual expression of GFP, in our case, is required to

maintain the transcription of target genes. Although GFP may

persist for a prolonged period of time after its own transcription

has been shut off, this effect may be advantageous in certain

applications, such as when it is desirable to achieve a
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moderately prolonged but reversible gene expression effect.

When temporal control of gene expression is desired regardless

of GFP expression, rTetR-based T-DDOGs should be useful as

they are additionally controlled by drug treatment (Figures 3C–

3E) and could take advantage of the various TRE reagents avail-

able (Schönig et al., 2010).

There are additional reasons to use GFP lines for cell-specific

targeting. First, not all definable cell types can be specifically

targeted by a single driver line (Dymecki et al., 2010). Restriction

of target gene expression may be accomplished by intersecting

GFP expression with expression of T-DDOG components, other

transcription systems, and/or recombination systems. Second,

position effects can sometimes unexpectedly activate GFP in

unique cell types. For example, this is thought to be the case

for the Tg(GUS8.4-GFP) line and the Tg(Thy1-XFP) collections

(Huang et al., 2003; Feng et al., 2000). Replacement of trans-

genes typically requires the generation of new transgenic lines

and can result in changes to cell specificity of transgene expres-

sion. Emerging site-specific, genome-editing strategies hold

promise for enabling efficient swapping of transgenes while

minimizing changes to cell specificity (Cong et al., 2013; Gohl

et al., 2011; Mali et al., 2013). However, it still takes a relatively

long time, as well as significant expense, to generate, charac-

terize, and maintain modified transgenic mouse lines.

The GFP-dependent transcription system should find applica-

tions beyond mice and zebrafish. As T-DDOGs are built from

protein parts commonly used in other model organisms such

as Drosophila, other communities can easily adopt T-DDOG

components for use in concert with existing GFP driver and

responder lines, as well as transient gene delivery vectors. In

addition, the modularity of this system allows for a seemingly

unlimited number of T-DDOGs to be created according to user

demands. Notably, T-DDOGs with customizable DNA-binding

specificity (Hsu and Zhang, 2012) would allow for targeted

control of endogenous loci without the need for responder

cassettes.

Practical Considerations for T-DDOG Use
Although T-DDOG activities are highly dependent on GFP

expression, whether one succeeds in converting an observed

GFP expression pattern into corresponding gene output pattern

depends on several factors. First, cells expressing GFP at low

levels, or transiently, may evade detection in the initial stages

of characterization. Such ‘‘background’’ GFP expression may

be detected by certain T-DDOG configurations. Differing fusion

protein stability and/or differing GBP affinity for GFP probably

contribute to differences in T-DDOG sensitivity. Specifically,

we found that Gal4-GBP1p65-GBP6 promoted detection of

normally undetectable GFP expression from mGluR-GFP in

photoreceptors. However, little to no T-DDOG-mediated expres-

sion occurred in these cells. As an mGluR6-driven Cre construct

was found to induce recombination in photoreceptors, in addi-

tion to bipolar cells (data not shown), we interpret the photo-

receptor GFP signal as reflecting leakage from the mGluR6

promoter, as well as stabilization of the leaky GFP by Gal4-

GBP1p65-GBP6. Because Gal4-GBP2p65-GBP7 did not reveal

the leaky mGluR6-GFP expression and its corresponding

T-DDOG did not induce reporter output in photoreceptors,
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Gal4-GBP2p65-GBP7 may be used for cases when it is not desir-

able to reveal GFP expression normally below detection

threshold. A second issue regards T-DDOG detection of tran-

sient GFP expression during early development. This could be

addressed by using rTetR-based T-DDOGs for temporal control

or by restricting T-DDOGs expression to late progenitors or post-

mitotic cells, as is possible with electroporation, viral vectors,

and/or late-expressing promoters.

Very high levels of GFP expression also require consideration,

as too much GFP may saturate GBP binding sites, thereby pre-

venting assembly of T-DDOGs (Figure 2E). Nonetheless, we

could induce strong T-DDOG readout in Tg(CRX-GFP), a very

strong GFP-expressing mouse line (Samson et al., 2009) (data

not shown).When necessary, there are approaches to overcome

the issue of excessive GFP expression. First, one can capture

T-DDOG activity using a recombinase as the T-DDOG readout.

We demonstrated that T-DDOGs could drive expression of Cre

to induce irreversible gene expression changes regardless of

changes in GFP level. Second, we showed that one could

increase the number of GBPs on the DBDG component; this is

expected to enhance the GFP binding capacity of the system.

Lastly, higher levels of expression of T-DDOGs should be able

to balance high GFP levels. Transgenic lines expressing

T-DDOGs at high, medium, and low levels should be sufficient

for a research community to manipulate a broad range of trans-

genic GFP lines.

Here, we demonstrated that electroporation or microinjection

could immediately be used to deliver T-DDOGs to receptive

tissues and organisms for manipulation of GFP-labeled cell

types. Additionally, it should require little effort to extend the

delivery route to viral vectors. The two components of T-DDOGs

can be linked by IRES elements or 2a peptides for expression

from a single promoter (Figure 7). Each component is relatively

small, ranging from �500 bp to �1.2 kbp in length, allowing

both T-DDOG components to fit into popular viral vectors such

as adeno-associated viruses (AAVs) (Yizhar et al., 2011).

Responder cassettes can also be delivered virally or by electro-

poration (Figures 4, 5, and 6). Transient delivery methods usually

do not provide access to all possible cell types within a tissue or

organism; this can be taken into account during experimental

design. For example, any retinal cell class is accessible given

the right choice of AAV serotypes or electroporation method

(Matsuda and Cepko, 2004, 2007; Watanabe et al., 2013).

Furthermore, the inherent cell-type specificity of certain gene

delivery methods can be exploited to subtract undesired GFP-

labeled cell types from being manipulated. For some applica-

tions, it will be desirable to deliver T-DDOGs to all cells in a

tissue, or to entire organisms. Transgenic lines expressing

T-DDOGs under the control of broadly active promoters would

meet these needs, and these tools are under development.

Whenever exogenous components are delivered to cells, one

should be cautious of unintended effects. Potential side effects

from AD overexpression have long been recognized (Gill and

Ptashne, 1988), but applications with transcription factors

continue to grow (Schönig et al., 2010; Venken et al., 2011)

and drive meaningful discoveries (Kinoshita et al., 2012; Miyami-

chi et al., 2011). As we found here, problems with an AD may be

overcome by testing ADs differing in origin and transcriptional



potency. Alternatively, one can reduce expression of a given

T-DDOG. IRES-linked cassettes typically give lower expression

of genes in the second position relative to those in the first posi-

tion (Mizuguchi et al., 2000). This could be used to express the

DBDG component at high levels while keeping the ADG levels

relatively low.

Fluorescent Proteins as Multifunctional Switches for
Heterologous Systems
As GFP does not have any committed regulatory function in host

cells, it may be co-opted for other regulatory purposes. To

realize GFP’s full potential, additional GFP-binding reagents

and engineering efforts will be needed to expand its functionality

and to improve the performance of GFP-dependent devices.

Beyond transcription, the GFP scaffold should be able to regu-

late other activities such as recombination (Jullien et al., 2003)

and proteolysis (Wehr et al., 2006). Although the GBP1 binding

epitope on GFP has been revealed by X-ray crystallography

(Kirchhofer et al., 2010), it is unclear how GBP2, 6, or 7 bind to

GFP. Structural understanding of how GBP pairs co-occupy

GFP would facilitate the design of other GFP-inducible com-

plexes, such as when protein fragments have to be positioned

in strict orientations.

Eventually, fluorescent proteins may become preferred trans-

genes for organisms with long generation times, such as rodents

and primates. Because the expression pattern of fluorescent

proteins can be characterized from the first set of transgene car-

riers, any experimental manipulation of labeled cells could be

conducted within the same generation by transient device deliv-

ery or in the next generation by mating with transgenic device

carriers. Also, as one can retroactively build systems to exploit

fluorescent proteins for different purposes, it may become

unnecessary to generate redundant lines driving different trans-

genes selectively in the same cell populations. Lastly, engineer-

ing of small-molecule ligands that regulate fluorescence would

even enable one to use fluorescent proteins exclusively for

gene control without interfering with the imaging of other spec-

trally overlapping probes (Kumagai et al., 2013).

Perspective on Targeting Intracellular Products for Cell-
Specific Control
Many intracellular products, such as RNA and proteins, are

expressed in a cell-specific manner and could potentially be

exploited as spatial signals to control synthetic circuits in multi-

cellular organisms. Here, we demonstrated that artificially

derived binding proteins are useful for co-opting an intracellular

protein, GFP, for this purpose. Because this approach does not

require anymodification of the targetmolecule or rely on themol-

ecule’s natural interactions or functions, it may be generalizable

to any intracellular product for which artificially derived binding

proteins can be selected. Certainly, GFP seems to be an ideal

target because it is an exogenous molecule that shows little

connection to host protein networks. However, other exogenous

molecules, such as b-galactosidase or Cre recombinase, should

also be useful as scaffold proteins. Furthermore, endogenous

molecules probably exhibit a spectrum of connectivity within

the host interactome, and a subset might be appropriate for

conferring cell-specific manipulations in multicellular organisms.
The ability to use intracellular products simply as cell-specific

scaffolds would enhance one’s ability to target and control cells

in nonmodel organisms where transgenic lines are not available.

EXPERIMENTAL PROCEDURES

Detailed methods, data analysis, and reagents used can be found in the

Extended Experimental Procedures.

Animals

All animal experiments performed were approved by the Institutional Animal

Care and Use Committee at Harvard University. Animal information is in the

Extended Experimental Procedures.

Molecular Biology and Screens

Using standard techniques, coding sequences of GBPs were fused to those of

DBDs or ADs in many configurations, and the products were inserted into

pCAG (Niwa et al., 1991). Pairwise combination of DBDG and ADG constructs

were then introduced into 293T cells or the mouse retina for screens. See the

Extended Experimental Procedures for details.

In Vitro Luciferase Assays

PlasmidsencodingCAG-drivenGFP,DBDG,andADGwere transfectedviapol-

yethyleneimine (PEI) into293Tcells alongwithplasmidsencodingUAS-luc2and

Renilla luciferaseorUAS-tdT.Cellswereharvested24hr later fordual-luciferase

assay (Promega) or imaged 16 hr later. All transfections except for the dosage

curve were done at a 1:1:1 (GFP:DBDG:ADG) plasmid molar ratio.

In Vivo Electroporations

P0 CD1 retinas weremicroinjected with plasmids into the subretinal space and

subjected to electroporation (Matsuda and Cepko, 2004). Plasmids encoded

DBDG, ADG, CAG-nlacZ (expresses the electroporation marker n-bgal),

UAS-tdT, and different promoter-GFP constructs. Electroporated retinas

were harvested at P14, immunostained for n-bgal, and imaged by confocal mi-

croscopy. At P3–5, Tg(GUS8.4GFP) retinas were electroporated with plasmids

encoding T-DDOG components, UAS-driven constructs, and CAG-nlacZ; ret-

inas were harvested between 3 and 4 weeks of age for UAS-tdT detection and

between 8 and 10 weeks of age for 103UAS-ChR2/134R stimulation. Wher-

ever applicable, retinas were immunostained with anti-GFP or anti-dsRed to

visualize processes. Anti-Calbindin or anti-Calretinin label layers in the IPL.

Neuronal Recordings

C57BL/6 embryos were electroporated with plasmids encoding CAG-driven

GFP, DBDG, ADG, and UAS-tdT into the lateral ventricle at embryonic day

15.5. Acute brain slices were prepared from electroporated 1- to 2-week-old

miceusingstandardprocedures.Whole-cell current clamp recordingswereper-

formed onGFP�, GFP+, andGFP+/tdT+ cortical layer 2/3 pyramidal neurons in

regions of dense electroporation. For ChR2/H134R experiment, electroporated

retinas from 8- to 10-week-old Tg(GUS8.4GFP) mice were flat mounted, and

loose cell-attached patch clamp was performed on GCL cells that had

mCherry/tdT+ bipolar cells in their dendritic fields. Photoreceptors were stimu-

latedby light focusedon theouter segmentsofphotoreceptorsat a light intensity

of 1.33 103 R*/s. 20 mMAPBwas used whenever applicable. ChR2was stimu-

lated by light focused on the bipolar cell layer at �108 R*/s for 2 s. Epifluores-

cence or two-photon microscopes were used to identify fluorescent cells.

Otx2 Removal Experiment

P0Otx2fl/fl (Tian et al., 2002) retinas were electroporated ex vivo (Emerson and

Cepko, 2011) with plasmids bearing Gal4-GBP1p65-GBP6, UAS-Cre, and CAG-

nlacZ along with either GFP or dsRed-expressing plasmids. Retinas were

cultured ex vivo, harvested at P8, immunostained for OTX2, PAX6, and/or

n-bgal expression, and subjected to confocal imaging.

Zebrafish Microinjections

DBDG and ADG coding sequences of Gal4-GBP1p65-GBP6 were linked by an

IRES element, subcloned into pCS2+, and transcribed in vitro from the SP6
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promoter (mMessagemMachine SP6 RNA Kit, Ambion). RNAs were subjected

to LiCl precipitation. One- to two-cell embryos were injected with 40 ng/ml RNA

encoding IRES-linked T-DDOG and 25 ng/ml of NotI-linearized UAS-tdT DNA.

GFP+ and GFP� embryos, obtained from outcrosses of heterozygote Tg(ubi-

GFP) (Mosimann et al., 2011) males to wild-type Tubingen females, were

blindly injected with the same RNA/DNA mixture in the same experiment

such that the injection success rate for both genotypes should be similar. In-

jected embryos were incubated at 28�C, and survivors were analyzed for

GFP and tdT expression 1 to 2 days postfertilization.

Statistical Analysis

Two-tailed Student’s t test assuming unequal variance was used for all com-

parisons except cortical recording analysis, for which one-way ANOVA was

used. p > 0.05 is judged as statistically significant.

See the Supplemental Information for detailed methods and reagents used.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and seven tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.07.021.
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