
Article
Enkephalin Disinhibits Mu
 Opioid Receptor-Rich
Striatal Patches via Delta Opioid Receptors
Highlights
d Synaptic inhibition in patches arises from within patches but

not matrix

d Enkephalin facilitates patch output through a disinhibitory

mechanism

d Mu opioid receptors are expressed in both striatal pathways

in patches

d Delta opioid receptors on striatopallidal neurons are the

primary target of enkephalin
Banghart et al., 2015, Neuron 88, 1227–1239
December 16, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.neuron.2015.11.010
Authors

Matthew Ryan Banghart, Shay Quentin

Neufeld, Nicole Christine Wong,

Bernardo Luis Sabatini

Correspondence
Bernardo_Sabatini@hms.harvard.edu

In Brief

Opioid neuropeptides and their receptors

are prominent in striatal compartments

known as patches (striosomes) and

matrix. We show that enkephalin

facilitates cortically driven action

potential firing selectively in mu opioid

receptor-rich patches of the dorsal

striatum through a disinhibitory

mechanism that is dominated by the delta

opioid receptor.

mailto:Bernardo_Sabatini@hms.harvard.edu
http://dx.doi.org/10.1016/j.neuron.2015.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2015.11.010&domain=pdf


Neuron

Article
Enkephalin Disinhibits Mu Opioid
Receptor-Rich Striatal Patches
via Delta Opioid Receptors
Matthew Ryan Banghart,1,2 Shay Quentin Neufeld,1,2 Nicole Christine Wong,1 and Bernardo Luis Sabatini1,*
1Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
2Co-first author

*Correspondence: Bernardo_Sabatini@hms.harvard.edu
http://dx.doi.org/10.1016/j.neuron.2015.11.010
SUMMARY

Opioid neuropeptides and their receptors are evolu-
tionarily conserved neuromodulatory systems that
profoundly influence behavior. In dorsal striatum,
which expresses the endogenous opioid enkephalin,
patches (or striosomes) are limbic-associated sub-
compartments enriched in mu opioid receptors.
The functional implications of opioid signaling in
dorsal striatum and the circuit elements in patches
regulated by enkephalin are unclear. Here, we exam-
ined how patch output is modulated by enkephalin
and identified the underlying circuit mechanisms.
We found that patches are relatively devoid of parval-
bumin-expressing interneurons and exist as self-
contained inhibitory microcircuits. Enkephalin sup-
presses inhibition onto striatal projection neurons
selectively in patches, thereby disinhibiting their
firing in response to cortical input. The majority of
this neuromodulation is mediated by delta, not mu-
opioid, receptors, acting specifically on intra-striatal
collateral axons of striatopallidal neurons. These
results suggest that enkephalin gates limbic informa-
tion flow in dorsal striatum, acting via a patch-spe-
cific function for delta opioid receptors.

INTRODUCTION

The striatum is the principal input nucleus of the basal ganglia,

a group of brain nuclei critical for generating purposeful move-

ments and reinforcing behaviors that maximize reward. Many

aspects of basal ganglia and striatal circuitry, including neuro-

chemical markers and projection patterns, are conserved across

vertebrates (Reiner et al., 1998; Stephenson-Jones et al., 2012).

In particular, the opioid peptide enkephalin (enk) is selectively

expressed by striatopallidal neurons in birds, fish, andmammals,

suggesting that it mediates a highly conserved function in the

basal ganglia (Reiner, 2010).

Enk-expressing striatopallidal neurons, also known as indirect

pathway striatal projection neurons (iSPNs), are distinct from

striatonigral neurons of the direct pathway (dSPNs), which

instead express dynorphin and substance P. Together, these
Ne
GABAergic projection neurons comprise �90% of all striatal

neurons, are physically intermixed throughout striatum, and ac-

count for all striatal output. In rodents, cats, and primates, opioid

peptide and receptor expression patterns demarcate a second,

mesoscale organization of the striatum consisting of subdivi-

sions into patch (or striosome) and matrix compartments. The

patch compartment occupies 10%–20% of the striatal volume

and expresses high levels of the mu opioid receptor (MOR),

which is relatively absent from the surrounding matrix (Herken-

ham and Pert, 1981; Pert et al., 1976; Ragsdale and Graybiel,

1981). In contrast, enk, an endogenous ligand for MORs, is en-

riched in the matrix over patches in mice (Koshimizu et al.,

2008). Since the dorsal striatum lacks beta-endorphin (Khacha-

turian et al., 1985), enk is likely the primary endogenous ligand for

MORs in patches. Because patches exist as an interconnected

tubular labyrinth coursing through the matrix (Desban et al.,

1993; Graybiel and Ragsdale, 1978), enk signaling may repre-

sent a central means of communication between striatal patch

and matrix compartments.

Several features of patch and matrix circuitry suggest that

they operate in parallel to mediate distinct functions. First, excit-

atory inputs to each compartment are segregated according to

cortical area, with patches preferentially innervated by limbic-

associated cortical regions and matrix receiving biased innerva-

tion from sensorimotor cortices (Donoghue and Herkenham,

1986; Gerfen, 1984; Goldman-Rakic, 1982; Ragsdale and Gray-

biel, 1981). Second, the dendrites and local axon collaterals of

SPNs conform to compartmental boundaries (Kawaguchi et al.,

1989). Lastly, dSPNs in patches project directly to dopaminergic

neurons in the substantia nigra pars compacta (SNc), whereas

matrix dSPNs project to GABAergic neurons of basal ganglia

output nuclei, the substantia nigra pars reticulate, and the endo-

peduncular nucleus (Fujiyama et al., 2011; Gerfen, 1984; Wa-

tabe-Uchida et al., 2012). Thus, patch and matrix compartments

are proposed to operate as independent and functionally sepa-

rate microcircuits with distinct inputs, local circuitry, and out-

puts. These anatomical relationships are consistent with the

implication of patches in experience-based locomotor learning

and reward-guided behavior (Canales and Graybiel, 2000; Fried-

man et al., 2015; Lawhorn et al., 2009; White and Hiroi, 1998).

Despite the abundance of enk in striatum and the conspicuous

expression of MORs in patches, the functional consequence of

enk action in patches versus matrix is not known. The sole study

of opioid signaling in patches observed MOR-mediated sup-

pression of both excitatory and inhibitory synaptic transmission
uron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc. 1227
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Figure 1. Visualization of Patch and Matrix

Compartments in Pdyn-EGFP Transgenic

Mice

(A) Fluorescence mosaic image of a coronal sec-

tion of a Pdyn-EGFP (green, left) mouse im-

munolabeled against theMOR (red, middle). EGFP

expression closely matches the distribution of

MOR-rich patches (right). This mosaic image was

acquired and generated on an Olympus VS120

microscope.

(B) Confocal fluorescence image of a striatal patch

(green) in a coronal slice of a Pdyn-EGFP (green)

and Drd1a-tdTomato (red) double transgenic

mouse immunolabeled against the neuronal

marker NeuN (blue). EGFP is expressed in patches

only in dSPNs, which express tdTomato (right).

(C) Quantification of Drd1a-tdTomato+ cells in

patches and matrix. The percentage of NeuN+

cells expressing tdTomato was higher in patches

than in the matrix. Bars graphs indicate the mean

(± SEM). *p < 0.05 using a two-tailed Mann-Whit-

ney U test.

(D) Quantification of cell density in patch and

matrix compartments. Cell classes were im-

munolabeled for identification in sections from

Pdyn-EGFP mice. No significant difference in the

density of NeuN+ cells (left) or SOM+ interneurons

(middle) was observed, whereas PV+ interneurons

were more abundant in the matrix. Examples of

SOM and PV immunolabeling are presented in

Figure S2. Bars graphs indicate the mean (± SEM).

*p < 0.05 using a two-tailed Mann-Whitney U test.
(Miura et al., 2007). However, enk also binds delta opioid recep-

tors (DORs), which appear to be uniformly expressed in striatum.

Both MORs and DORs are Gai/o-coupled GPCRs that typically

suppress cellular excitability and synaptic transmission. How

the actions of enk translate into changes in circuit output depend

on its cellular and synaptic targets and what their functional roles

are in the microcircuit. Thus, the cumulative actions of enk in

striatum remain to be determined.

In this study, we use transgenic mice that enable a priori iden-

tification of both striatal pathways (dSPN versus iSPN) and com-

partments (patch versusmatrix) to analyze themicrocircuitry and

modulation of patches in mice. Using a combination of histo-

chemical methods and targeted electrophysiological recordings

in brain slices, we defined the cellular components of the patch

microcircuit, revealed that enk functions in a compartment-spe-

cific manner, identified its cellular and receptor targets, and

determined its net functional effect on circuit output. Our results

provide a detailed understanding of the circuit mechanism by

which enk selectively modulates activity in patches and provide

critical insight into the functional relevance of enk signaling in

dorsal striatum.
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RESULTS

Patches in the Dorsal Striatum Are
Isolated Microcircuits
Analysis of the structure and function of

striatal patches has been hindered by
the lack of tools to readily identify patches in living tissue. We

took advantage of a bacterial artificial chromosome (BAC) trans-

genicmouse in which EGFP is expressed under the control of the

promoter for prodynorphin (Pdyn). Throughout this study exper-

iments were performed in the dorsal striatum (Figure S1A) of

P28–P35 mice. EGFP expression in dorsal striatum of Pdyn-

EGFP BAC transgenic mice is largely restricted to regions of

neuropil immunohistochemically labeled for MORs (Figure 1A)

(Cui et al., 2014; Gong et al., 2003). Using EGFP expression to

identify patches, we found that they comprise 10% ± 3% of

the dorsal striatal volume (Figure S1A), similar to previous esti-

mates in several organisms (Crittenden and Graybiel, 2011).

In Pdyn-EGFP mice, EGFP expression is restricted to dSPNs,

as revealed in mice also carrying the Drd1a-tdTomato BAC (Ade

et al., 2011), in which red fluorescence labels all dSPNs (Fig-

ure 1B). EGFP was detected in 86% of tdTomato-expressing

neurons (228 of 264 cells), and there was no coexpression of

EGFP with transgenically labeled iSPNs (see Experimental Pro-

cedures; Figures S1B and S1C) or immunohistochemically iden-

tified interneuron classes (Figure S2). This high specificity and

selectivity of labeling of patch dSPNs with a marker visible in
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Figure 2. Anatomical and Functional Isola-

tion of Patch and Matrix Compartments

(A) Confocal fluorescence image of a neurobiotin-

filled dSPN located near the border within a patch.

The dendrites of this patch SPN remained within

the patch.

(B) Electrical stimulation with a small bipolar elec-

trode reveals a lack of inter-compartmental inhib-

itory synaptic connectivity. Left: IPSC amplitude

dropped dramatically when the stimulating elec-

trode was moved at equal distance from the cell

body into the matrix, as depicted in the schematic.

Right: Representative traces (average of three tri-

als) obtained with the electrode placed 70 mm

away from the recorded cell in the patch (red) and

matrix (purple).

(C) Summary plot of the IPSC amplitudes evoked

in each patch neuron by stimulation in the patch

and matrix shown as connected dots. Averages

across cells are shown in gray (mean ± SEM). *p <

0.05, one-tailed Wilcoxon signed-rank test.
acute brain slices permits systematic analyses of both cellular

composition and the electrophysiological properties of striatal

patches. However, because Pdyn-EGFP incompletely labels

patch dSPNs (86%), we frequently included theDrd1a-tdTomato

transgene in order to identify all dSPNs in both compartments,

and by exclusion of tdTomato, target iSPNs.

Previous anatomical analyses have reported conflicting results

as to whether the cellular composition of patch and matrix

compartments is distinct (Besson et al., 1990; Gerfen and Young,

1988). Immunolabeling of striatal slices from Pdyn-EGFP;Drd1a-

tdTomato mice for the neuron-specific nuclear protein NeuN

(Figure 1B) revealed that dSPNs are overrepresented in

patches (patch: 60% ± 3% [245 of 417] NeuN+ neurons are

tdTomato+; matrix: 47% ± 1% [217 of 456] NeuN+ neurons are

tdTomato+; 7 images, 2 mice, p = 0.0023) (Figure 1C), although

overall neuronal density is similar across compartments (patch:

2,483 ± 295 cells/mm2; matrix: 3,305 ± 846 cells/mm2; p =

0.45) (Figure 1D).We foundnodifference in the density of cells im-

munopositive for somatostatin (SOM) (patch: 49 ± 11 cells/mm2,

n = 33 cells; matrix: 44 ± 1 cells/mm2, n = 361 cells; 4 images, 2

mice, p > 0.99) (Figure 1D). In contrast, parvalbumin (PV)-ex-

pressing cells were approximately half as abundant in patches

compared tomatrix (patch: 28 ± 7 cells/mm2, n = 27 cells; matrix:

65 ± 3 cells/mm2, n = 564 cells; 5 images, 2mice, p = 0.0079) (Fig-

ure 1D). In agreement with this, synaptophysin labeling of pre-

synaptic terminals of PV cells provided sparser innervation of

patches relative to matrix (Figure S3). Together, these data indi-

cate that patch microcircuits are enriched in dSPNs and have

reduced PV cell innervation compared to the surrounding matrix.

Anatomical data suggest that patch andmatrix compartments

have segregated local inhibitory connectivity (Kawaguchi et al.,

1989), but this has not been tested functionally. Furthermore,

several interneuron classes may break this rule (Penny et al.,

1988). High-magnification images of EGFP+ neuronal processes
Ne
and neurobiotin-filled dSPNs confirmed that dendrites origi-

nating from cells inside patches remain within patches, even if

the cell body is near the compartment boundary (Figure 2A).

To examine whether SPNs within patches are functionally

innervated by neurons residing in the matrix, we recorded syn-

aptic currents in patch neurons under whole-cell voltage-clamp

in acute brain slices of Pdyn-EGFP mice. Inhibitory synaptic

transmission was evoked using small bipolar stimulating elec-

trodes placed in the same patch compartment as the recorded

cell and isolated pharmacologically by blocking glutamate re-

ceptors with NBQX and CPP. After obtaining a stable baseline,

the stimulating electrode was moved stepwise into the matrix,

maintaining a fixed radial distance from the soma of the re-

corded cell of �70 mm (Figure 2B). At the compartment border,

the evoked amplitude of the evoked inhibitory post-synaptic

current (IPSC) dropped rapidly with small changes in the posi-

tion of the stimulating electrode and was lost altogether in the

matrix (patch: 124 ± 24 pA; matrix: �1 ± 2 pA; n = 6 cells, p =

0.016) (Figure 2C). IPSCs recovered upon moving the electrode

back into the patch (not shown). Therefore, patches do not

receive substantial inhibition from neurons in the surrounding

matrix.

Opioid Receptors Are Expressed in SPNs of Both
Pathways
Given the synaptically isolated nature of the patch compartment,

communication between patch and matrix compartments might

be carried out by neuromodulators, which are capable of sig-

naling over substantial distances in tissue. Consistent with this

idea, enk is expressed at higher levels in the matrix than in

patches (Figure S4) (Koshimizu et al., 2008). Since patches are

highly enriched in MORs, enk may signal from the matrix into

patches. Alternatively, enk could also activate DORs, which

are expressed throughout striatum. Despite the enrichment of
uron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc. 1229
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Figure 3. Opioid Receptor Distribution in

SPNs as Revealed by Three-Color FISH

(A) Example of staining within a patch for Prody-

norphin (Pdyn, green), the MOR (Oprm1, magenta),

and the D2 dopamine receptor (Drd2, white).

Although there is very little co-localization of Pdyn

and Drd2, Oprm1 is found with both transcripts.

Large arrowheads indicate example Pdyn+ cells,

and small arrows indicate Drd2+ cells. Nuclear

DAPI staining is omitted for clarity.

(B) Example of staining within a patch for Pdyn

(green), the DOR (Oprd1, magenta), and Drd2

(white). Oprd1 is only found in cells expressing

Drd2.

(C) Quantification of the co-expression of Drd2,

Oprm1, and Oprd1 with Pdyn. Bars represent the

mean (+SEM) percentage of Pdyn+ DAPI-stained

nuclei also expressing the indicated transcripts.

*p < 0.05 using a two-tailed Mann-Whitney U test.

Oprm1, but not Oprd1, is found in cells expressing

Pdyn.

(D) Quantification of the co-expression of Pdyn,

Oprm1, and Oprd1 with Drd2. Bars represent the

mean percentage (+SEM) of Drd2+ DAPI-stained

nuclei also expressing the indicated transcripts.

Both Oprm1 and Oprd1 are found in cells ex-

pressing Drd2.

(E) Example of staining within a patch for Pdyn

(white), Oprd1 (green), and Oprm1 (magenta).

Oprm1 and Oprd1 are co-expressed but only in

Pdyn� cells. Large arrowheads indicate example

Pdyn+ cells, and small arrows indicate example

Oprd1+ cells. Summary data for (E) is presented in

Figure S6C.
MORs in patches and demonstration of their expression in

dSPNs (Cui et al., 2014), which cells within the striatum express

DORs and MORs remains unclear.

Neuron classes that express MORs and DORs were identified

by fluorescence in situ hybridization (FISH) to examine the

expression of multiple mRNAs in individual cells. dSPNs and

patches were identified by labeling for Pdyn, and iSPNs were

distinguished by the labeling for Drd2. Although strongly nega-

tively correlated (Figure S5), we observed co-labeling of Pdyn

and Drd2 probes in 17%–18% of cells in patches (see Supple-

mental Experimental Procedures). Given the lack of co-labeling

of iSPNs and dSPNswith transgenicmarkers, this value likely es-

timates the false-positive co-expression rate. We therefore used

the co-labeling of Pdyn and Drd2 as a control for evaluating

opioid receptor expression in each cell class.

We quantified the number of fluorescent puncta correspond-

ing to transcripts for Oprm1 (encoding MORs) or Oprd1 (encod-

ing DORs) in dSPNs and iSPNs in both patches and matrix

(Figures 3A, 3B, and S5). Consistent with the prominence of

MOR protein in patches, Oprm1 was detected in a greater per-

centage of cells located within Pdyn-enriched patches than in

the matrix (Figure S6A). Furthermore, the number of transcripts
1230 Neuron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc
per cell was greater in patches than in matrix (Figure S6B). In

contrast, Oprd1 was detected uniformly in both compartments,

both in terms of the percentage of Oprd1+ cells and the number

of transcripts per cell (Figures S6A and S6B), consistent with

prior studies using radiolabeled ligands that bind DORs (for

example, Pradhan and Clarke, 2005).

Within patches most Pdyn+ dSPNs expressed Oprm1, but

not Oprd1 (Oprm1+: 78% ± 2%, n = 1622 cells, 5 images, 3

mice, p = 0.0010; Oprd1+: 13% ± 1%, n = 1,003 cells, 4 images,

2 mice, p = 0.19) (Figure 3C). In contrast, most Drd2+ iSPNs

expressed Oprd1 and only about half expressed Oprm1

(Oprd1+: 78% ± 2%, n = 1,003 cells, 4 images, 2 mice, p =

0.0028; Oprm1+: 45% ± 5%, n = 1,622 cells, 5 images, 3 mice,

p = 0.0010) (Figure 3D). These data suggest that individual iSPNs

might express both DOR andMOR in patches. Indeed, in a sepa-

rate experiment, we confirmed co-expression of Oprm1 and

Oprd1 in patch iSPNs using triple FISH for PDyn, Oprm1, and

Oprd1 (Figure 3E). The vast majority of cells expressing both

Oprm1 and Oprd1 were negative for Pdyn (Figure S6C). There-

fore, these results (tabulated in Figure S6D) suggest that the

potential GPCR targets for enk in patches are MORs and

DORs on iSPNs and MORs on dSPNs.
.



Enkephalin Suppresses Synaptic Inhibition in Patches
but Not Matrix
The observation that SPNs in patches express opioid receptors

raises the possibility that enk might alter the membrane excit-

ability of both dSPNs and iSPNs. To test for this, we expressed

channelrhodopsin-2 (ChR2) (Boyden et al., 2005) in SPNs and

applied enk during cell-attached recordings fromChR2-express-

ing neurons in order to preserve cytosolic signaling molecules

that may be downstream of opioid receptors. ChR2 was selec-

tively expressed in dSPNs or iSPNs by infection with Cre-depen-

dent adeno-associated virus (AAV) in the appropriate transgenic

animal. In the presence of a cocktail of antagonists for ionotropic

and metabotropic glutamate and GABA receptors, ramps of

blue light evoked trains of action potentials that progressively

increased in frequency (Figure 4A). To sensitively detect changes

in excitability, light intensities were chosen to trigger spike trains

that exhibit minimal accommodation, which typically involved a

1-s delay to the first spike and maximal instantaneous firing rates

of 30–40 Hz. After achieving stable responses, enk (leucine-

enkephalin) was applied by bath perfusion at a concentration

that strongly activates MORs and DORs (30 mM). The number

of light-evoked action potentials evoked per trial was unaffected

by 3–5min of enk application (dSPNs: 95%±10%of baseline, n =

9 cells, p = 0.44; iSPNs: 100% ± 3% of baseline, n = 6 cells, p >

0.99; p values reflect comparison of enk to baseline, see Experi-

mental Procedures) (Figure 4B). Thus, despite the expression of

opioid receptors by SPNs, enk does not directly regulate the

excitability of dSPNs or iSPNs in patches.

It is well established that MOR and DOR agonists suppress

excitatory transmission onto SPNs by 10%–30% in both

patches and matrix (Atwood et al., 2014; Blomeley and Bracci,

2011; Jiang and North, 1992; Miura et al., 2007). We therefore

focused on inhibitory synaptic transmission. In acute brain sli-

ces prepared from Pdyn-EGFP;Drd1-tdTomato mice, we ob-

tained whole-cell voltage-clamp recordings from identified

dSPNs and iSPNs located in both patches and matrix. IPSCs

were evoked electrically in the presence of NBQX and CPP

(Figure 4C), as well as the muscarinic antagonist scopolamine

to prevent potential confounds due to modulation of enk-sensi-

tive cholinergic neurons (Jiang and North, 1992; Ponterio et al.,

2013). Example IPSCs recorded from SPNs in the matrix and

patches are shown in Figure 4D, before and 3–5 min after

enk application. For each neuron, the effect on IPSC amplitude

was calculated as follows:

DIPSC= 100,ðDIPSCenk � DIPSCbaselineÞ=DIPSCbaseline:

IPSCs recorded from dSPNs in the matrix were insensitive to

enk but in patches they were strongly suppressed (matrix:

DIPSC = 6% ± 8%, n = 11, p = 0.64; patch: �54% ± 4%,

n = 19, p < 0.00010) (Figures 4E and 4F). Similar actions

were observed with methionine-enkephalin, another enkeph-

alin analog abundant in striatum, as well as with a lower con-

centration of enk (1 mM) indicating that 30 mM saturates striatal

opioid receptors (Figure S7B). IPSCs recorded from iSPNs

were also insensitive to enk in matrix and significantly sup-

pressed in patches (matrix: 3% ± 8%, n = 6, p = 0.84; patch:

�36% ± 4%, n = 8, p = 0.0078) (Figure S7C), although to a
Ne
lesser extent compared to dSPNs (p = 0.0013, Figure 4F).

Therefore, suppression of inhibition by enk is robust and spe-

cific to patches. Because inhibition onto dSPNs was more

sensitive to enk, and due to their potential to influence dopa-

mine signaling in the striatum, we focused on recordings

from patch dSPNs for all subsequent studies.

Suppression of inhibition by enk was completely blocked in

the presence of opioid antagonists (DIPSC = �2% ± 2%, n =

5, Figure 4G). To determine whether this suppression is tran-

sient or a form of long-term plasticity, we chased enk from

the bath with opioid antagonists (Figure 4H). Within 5–10 min

of washout, we observed near complete recovery of the IPSC

(�61% ± 11% in enk versus �6% ± 7% after washout, n = 5

cells, p = 0.031). Therefore, suppression of inhibition by enk

is an acute, reversible modulation. The locus of modulation

could be either pre- or post-synaptic, since SPNs of both path-

ways express opioid receptors. We were unable to obtain pos-

itive evidence for modulation of either the pre- or post-synaptic

terminal, as enk application did not significantly alter paired-

pulse ratios, spontaneous miniature IPSC (mIPSC) amplitude

or frequency, or GABA uncaging-evoked currents (Figures

S7D–S7G).

DORs Are the Major Receptor Target of Enkephalin in
Patches
To determine if activation ofMORmediates the actions of enk, we

examined suppression of inhibition in Pdyn-EGFP;Oprm1�/�

mice (Matthes et al., 1996). In these mice, which lack MORs but

retain patches (Figure 5A), enk application still strongly sup-

pressed IPSC amplitude (DIPSC = �46% ± 7%, n = 8 cells, p =

0.0039) (Figures 5B and 5C). Similarly, in Pdyn-EGFP;Oprd1�/�

mice (Filliol et al., 2000) patches were retained (Figure 5A) and in-

hibition was also suppressed, albeit to a lesser extent than either

wild-type or Oprm1�/� conditions (DIPSC = �28% ± 5%, n = 10

cells, p = 0.0019) (Figures 5B and 5C). These results indicate that

neither receptor is strictly necessary for enk to suppress inhibition

and suggest a contribution from both MORs and DORs.

In order to assess whether either MOR or DOR activation is

sufficient to explain the effects of enk, we selectively activated

each receptor pharmacologically. SNC-80 exhibits >10,0003

selectivity for DORs overMORs (Knapp et al., 1996), allowing se-

lective activation of DORs in brain slices. Although DAMGO is the

prototypical MOR-selective agonist, we found that DAMGO

application reduced inhibition in Pdyn-EGFP;Oprm1�/� mice

when applied at 1 mM but not 300 nM (Figures S8A and S8B).

The effects of 1 mM DAMGO in the Pdyn-EGFP;Oprm1�/�

mice were blocked by the highly selective DOR antagonist

TIPP-Psi (3 mM, Figures S8A and S8B), at a concentration we

independently verified to exhibit selectivity for DORs (Figures

S8C and S8D). We therefore used 300 nM DAMGO in the pres-

ence of 3 mM TIPP-Psi to selectively probe MORs. Under this

stringent condition, DAMGO application suppressed inhibition

by 22% ± 4% (n = 9 cells, p = 0.0019), confirming that MOR acti-

vation is sufficient to suppress inhibition (Figure 5C). DOR ago-

nism by SNC-80 (500 nM), however, produced an approximately

2-fold larger effect (DIPSC = �41 ± 8%, n = 11 cells, p = 0.0010)

(SNC-80 versus DAMGO, p = 0.032), whichwas blocked by 3 mM

TIPP-Psi (Figure S8E). Consistent with additive contributions
uron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc. 1231
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Figure 4. Enkephalin Suppresses Inhibition onto dSPNs and iSPNs in Patches but Not Matrix

(A) Cell-attached recordings of action potential firing from a dSPN (left) and iSPN (right) in the absence (top) and presence (bottom) of enk (30 mM), evoked by a 2-s,

473-nm blue light ramp. Action potential firing is unchanged by enk. ChR2 was targeted to dSPNs or iSPNs using the following transgenic animals: Drd1a-

Cre;Pdyn-EGFP for dSPNs; Adora2A-Cre;Pdyn-EGFP for iSPNs; and Dlg3-Cre;Drd1a-tdTomato;Ai32 for either (see Figure S7A).

(B) Summary data showing average number of spikes per trial evoked during the 2-s stimulus in the presence of enk normalized to baseline. Averages from each

cell are shown as open circles. The superimposed bars indicate the mean (± SD).

(C) Schematic illustrating the experimental configuration. Whole-cell voltage-clamp recordings of dSPNs or iSPNs were obtained in the patch or matrix com-

partments in acute brain slices from Pdyn-EGFP;Drd1a-tdTomato mice. Glass stimulating electrodes were placed in the same compartment within 100 mmof the

recorded cell.

(legend continued on next page)
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Figure 5. DORs, Not MORs, Dominate the

Suppression of Inhibition by Enkephalin

(A) Fluorescence mosaic images of EGFP

expression in coronal sections taken from Pdyn-

EGFP;Oprm1�/� (left) and Pdyn-EGFP;Oprd1�/�

(right) mice. In both cases, patches are present

and do not display gross abnormalities. Mosaic

images were acquired and generated on an

Olympus VS120 microscope.

(B) Average normalized IPSC amplitudes (± SEM)

over time during enk application for neurons from

Pdyn-EGFP;Oprm1�/� (gray) and Pdyn-EGFP/

Oprd1�/� (black) mice. In both cases IPSCs were

suppressed by enk.

(C) Summary plot of the normalized average IPSCs

in enk measured in Pdyn-EGFP;Oprm1�/� and

Pdyn-EGFP;Oprd1�/� mice as well as in wild-type

Pdyn-EGFP mice in the presence of the MOR

agonist DAMGO, the DOR agonist SNC-80, the

two combined, or enk (from Figure 4F). Although

both DAMGO and SNC-80 significantly sup-

pressed IPSCs, SNC-80 had a larger effect. The

actions of co-applied SNC-80 and DAMGO were

similar to enk. Averages from each cell are shown

as open circles. The superimposed bars indicate

the mean (± SEM). *p < 0.05 using a two-tailed

Mann-Whitney U test.
from both DORs andMORs, following DOR activation with SNC-

80, addition of DAMGO (1 mM) further suppressed inhibition

(�59% ± 4%, n = 12 cells, p = 0.00025), to an extent indistin-

guishable from enk (p = 0.39). These results indicate that enk

suppresses inhibition onto patch dSPNs predominately via

DORs, with a smaller contribution from MORs.

iSPN Inputs to dSPNs Are the Major Cellular Target of
Enkephalin in Patches
Patch SPNs receive inhibitory inputs from multiple classes of

neurons, including other SPNs and GABAergic interneurons,

any of which might be modulated by enk. To identify the inhibi-

tory inputs to dSPNs that are sensitive to enk, we bred mice

that express Pdyn-EGFP along with Cre recombinase in specific

striatal cell classes. We used Cre-dependent AAVs to express

ChR2 in Cre-expressing neurons and examined the effect of

enk on ChR2-evoked IPSCs. We were unable to reliably evoke

IPSCs in patches using two strains of mice expressing Cre un-

der PV promoters (Pvalb-IRES-Cre, Pvalb-2A-CreERT2-D, not

shown), possibly due to the relative lack of innervation of patches

by fast-spiking interneurons (Figures 1 and S3).
(D) Example of electrically evoked IPSCs recorded in the matrix (left) or patch

are shown.

(E) Average normalized IPSC amplitude (± SEM) over time during enk application f

strongly suppressed in patches but not matrix. For iSPNs, see Figure S7C.

(F) Summary data showing average baseline normalized IPSCs measured in the

(matrix) and circles (patch). The superimposed bars indicate the mean ± SEM. *p

(G) Average normalized IPSC amplitudes (± SEM) over time for dSPNs in patches

naloxone; 3 mM SDM25N). Enk did not suppress inhibition in the presence of op

(H) Example recording from a dSPN showing that the enk effect was reversed w

(I) Summary plot of the baseline-normalized average IPSCs evoked in dSPNs in

(± SEM) for individual neurons are shown as connected dots and across cells in

Ne
GABAergic synaptic currents were pharmacologically isolated

and optogenetically evoked using blue light flashes. GABAergic

IPSCs from SOM cells were not suppressed by enk (DIPSC =

4% ± 3%, n = 8 cells, p = 0.35). Inputs from dSPNs and iSPNs

were suppressed by enk (dSPNs: �32% ± 8%, n = 12 cells,

p = 0.0010; iSPNs: �68% ± 5%, n = 10 cells, p = 0.0020), with

iSPN inputs responding more strongly than dSPN inputs (p =

0.0032) (Figures 6A–6C).

The FISH analysis indicated that MORs are present in both

dSPNs and iSPNs and that DORs are exclusively expressed in

iSPNs. We hypothesized that suppression of iSPN inputs onto

dSPNs is mediated by DORs and possibly MORs, whereas

that of dSPN inputs onto dSPNs is mediated by MORs alone.

To test this, we examined each class of inputs using the selective

agonists described previously (Figure 5). Consistent with the

FISH findings, DAMGO slightly suppressed inhibition from both

dSPN and iSPN inputs (dSPNs: �27% ± 5%, n = 10 cells, p =

0.0010; iSPNs: �17% ± 5%, n = 10 cells, p = 0.0059) (Figure 6).

In contrast, SNC-80 had no effect on dSPN inputs but strongly

suppressed iSPN inputs (dSPNs: �6% ± 3%, n = 11 cells, p =

0.07; iSPNs: �48 ± 7%, n = 6 cells, p = 0.016). Supporting the
(right) before (black) and after (gray) application of enk. Single trial examples

or dSPNs in the matrix (squares) and patch (circles) compartments. IPSCswere

presence of enk. Averages from individual cells are shown as open squares

< 0.05 using a two-tailed Mann-Whitney U test.

during enk application in the presence of an opioid antagonist cocktail (3 mM

ioid antagonists.

ith an opioid antagonist cocktail (3 mM naloxone; 3 mM SDM25N).

the presence of enk and after reversal with opioid antagonists. The averages

gray. *p < 0.05, one-tailed Wilcoxon signed-rank test.
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Figure 6. Optogenetic Activation of Striatal

Cell Classes Reveals that Inhibition Arising

from dSPNs and iSPNs Is Suppressed by

Enkephalin in Patches

(A) Synaptic inhibition originating from SOM in-

terneurons is not suppressed by enk. Top: Sche-

matic depicting selective optogenetic activation of

SOM interneurons in Sst-Cre;Pdyn-EGFP mice

during whole-cell voltage-clamp recordings from

dSPNs in patches. Bottom: Summary plot of the

normalized average IPSCs measured in enk.

Throughout this figure, averages from each cell are

shown as open circles. The superimposed bars

indicate the mean (± SEM).

(B) Synaptic inhibition originating from dSPNs is

suppressed by enk and DAMGO, but not SNC-80.

Top: Schematic depicting selective optogenetic

activation of dSPNs in Drd1a-Cre;Pdyn-EGFP

mice during whole-cell voltage-clamp recordings

from dSPNs in patches. Bottom: Summary plot of the normalized average IPSC measured in enk, DAMGO, and SNC-80.

(C) Synaptic inhibition originating from iSPNs is suppressed by enk, DAMGO, and SNC-80. Top: Schematic depicting selective optogenetic activation of iSPNs in

Adora2A-Cre;Pdyn-EGFP mice during whole-cell voltage-clamp recordings from dSPNs in patches. Bottom: Summary plot of the normalized average IPSC

measured in enk, DAMGO, and SNC-80. SNC-80 had a significantly greater effect than DAMGO. *p < 0.05 using a two-tailed Mann-Whitney U test.
lack of DORs in dSPNs, the action of DAMGO on dSPN inputs

was sufficient to account for the action of enk (p = 0.91). This

was not the case for suppression of iSPN input, where SNC-80

dominated the effect over DAMGO (SNC-80 versus DAMGO,

p = 2.03 10�4). These data support a local circuit model in which

enk suppresses inhibition onto dSPNs predominantly via DORs

on iSPN inputs, and to a lesser extent via MORs influencing

both iSPN and dSPN inputs.

Enkephalin Disinhibits Patch dSPNs
Given that enk does not directly modulate SPN firing but

strongly reduces SPN to SPN collateral inhibition, we hypothe-

sized that the net outcome of enk signaling in patches is disin-

hibition during prolonged excitatory drive. To investigate this

possibility, we stimulated network activity by optogenetically

driving cortico-striatal excitatory inputs and measured the ac-

tions of enk on SPN output (Figure 7A). Whole-cell voltage-

clamp recordings revealed IPSCs at the reversal potential for

glutamatergic transmission, which were strongly suppressed

by enk (DIPSC = �57% ± 5%, n = 6 cells, p = 0.016) to a degree

similar to that measured using electrical stimulation locally in

patches (p = 0.72) (Figures 7B and 7C). Confirming that this in-

hibition was indeed mediated by excitatory transmission-driven

disynaptic inhibition, NBQX and CPP eliminated the IPSC

(reduced to 6% ± 2% of baseline, n = 6 cells, p = 0.016, Figures

7B and 7C).

Because opioids have been reported to reduce glutamate

release in both patches and matrix (Atwood et al., 2014; Jiang

and North, 1992; Miura et al., 2007), suppression of excitation

might counteract suppression of inhibition and prevent the pre-

dicted facilitation of spiking in patches by enk. Therefore, we

measured the consequence of enk application on action poten-

tial firing induced by cortico-striatal activation. Whole-cell cur-

rent-clamp recordings from dSPNs in patches were used

to monitor the responses to five blue light flashes delivered at

20–25 Hz. This stimulus typically elicited a single spike in
1234 Neuron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc
response to the first flash, which was followed by subthreshold

EPSPs (Figure 7D). On average, the number of action potentials

per trial increased 3–5 min after enk application (1.11 ± 0.07

spikes during baseline versus 1.94 ± 0.36 in enk, n = 6 cells,

p = 0.031). When discernable, the amplitude of a superimposed

feedback IPSP, presumably arising from adjacent SPNs that also

fired in response to cortico-striatal stimulation, also decreased

(Figure 7E). In contrast, enk did not change the response of

dSPNs located in the matrix to the same stimulus (1.03 ± 0.03

spikes during baseline versus 0.95 ± 0.12 in enk, n = 5 cells,

p = 0.75, Figure 7F), consistent with selective suppression of in-

hibition in patches. Therefore, the net consequence of enk on

striatal output is disinhibition of dSPNs in patches, enabling

these neurons to better follow trains of excitatory drive from cor-

tex. This disinhibition is specific to patches and thus represents a

mechanism for opioid action to shift the balance of activity be-

tween striatal compartments to favor patches.

DISCUSSION

In this study, we used Pdyn-EGFP mice to identify patches

and dSPNs in dorsal striatum. Our observations in mice

reveal distinct microcircuitry in patches and provide functional

evidence for compartmentalized synaptic transmission. We

further examined the actions of the endogenous opioid neuro-

peptide enk on synaptic transmission and microcircuit output.

Our anatomical and functional data concordantly confirm that

MORs are prominent in dSPNs and that they mediate compart-

ment-specific suppression of inhibition in patches. Surprisingly,

our studies uncovered amajor role for DORs in the compartmen-

talized actions of enk, despite their uniform expression in stria-

tum.We pinpointed iSPNs as themajor cellular target of enk pre-

dominately via its activation of DORs, and to a lesser extent via

activation of MORs. We further demonstrated that this disinhibi-

tory pathway leads to a net increase in dSPN firing in patches,

highlighting the importance of DOR and inhibitory collaterals in
.
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Figure 7. Enkephalin Disinhibits dSPNs in

Patches

(A) Schematic depicting optogenetic activation of

the striatal microcircuit in brain slice by driving cor-

ticostriatal inputs in Emx1-Cre;Pdyn-EGFP;Drd1a-

tdTomato;Ai34 mice.

(B) Disynaptic inhibition in patches is suppressed

by enk. Example IPSCs in the absence (baseline,

black) and presence of enk (gray), and after the

addition of NBQX and CPP (orange) to block

excitatory transmission.

(C) Summary plot of the normalized average IPSC

measured in enk and NBQX+CPP. Averages from

each cell are shown as open circles. The super-

imposed bars indicate the mean (± SEM).

(D) Synaptically driven action potentials are facili-

tated by enk. Example current-clamp recording

from a patch dSPN that was stimulated by five blue

light flashes (20 Hz) before (black) and after (gray)

enk application. Data were acquired every 20 s.

(E) Superimposed single-trial example responses

to the blue light stimulus before (black) and after

(gray) enk application. In this example, suppres-

sion of the co-incident IPSP by enk can be

observed.

(F) dSPNs are disinhibited in the patch, but not

matrix compartment. Summary plots of the average

number of spikes per trial during the baseline period

and after enk application, recorded from cells

located in the patch (left) and matrix (right) com-

partments. The averages (± SEM) for individual

neurons are shown as connected dots and across

cells in gray. *p < 0.05, two-tailed Wilcoxon signed-

rank test.
shaping cortically driven striatal output. These findings are

graphically summarized in Figure 8.

Patch Microcircuitry
We characterized the circuitry of patches and conducted exper-

iments that functionally probe synaptic compartmentalization.

We found that cellular composition differs between patches

and matrix with the former having higher dSPN density and a

conspicuous under-representation of PV+ interneurons. Further-

more, using several transgenic mouse lines, we were unable to

reliably obtain synaptic responses in patch SPNs following stim-

ulation of PV+ interneurons, suggesting a lack of PV innervation

of patch SPNs. The functional implications of this difference

require further investigation.

SPN axon collaterals have been reconstructed and shown to

respect compartmental boundaries (Kawaguchi et al., 1989;

Penny et al., 1988). In contrast, SOM and PV interneurons

seem to localize near the borders, with their axons (SOM)

(Rushlow et al., 1996) and dendrites (PV) (Cowan et al.,

1990; Kubota and Kawaguchi, 1993) innervating both patches

and matrix. However, our results indicate that the vast ma-

jority of synaptic inhibition in patches arises from within the

compartment. These results also suggest that axons of other

inhibitory neurons, such as pallidostriatal projections and

axons of SPNs leading out of striatum, do not generally cross

patch/matrix boundaries.
Ne
Opioid Regulation of Inhibition in Patches
To understand the consequences of enk signaling, we systemat-

ically identified sites of enk action in the patch microcircuit. The

intrinsic excitability of neither dSPNs nor iSPNs was sensitive to

enk, despite their high expression of opioid receptors. As ex-

pected, we observed patch-specific suppression of inhibition,

but unlike prior studies (Miura et al., 2007), we found that primar-

ily DORs rather than MORs mediate this opioid effect.

The observed pathway distribution of opioid receptors in

dSPNs and iSPNs in patches provides insights inaccessible in

prior anatomical (Cui et al., 2014; Guttenberg et al., 1996;

Oude Ophuis et al., 2014) and biochemical (Lindskog et al.,

1999; Noble and Cox, 1995) studies that did not distinguish be-

tween compartments. While these studies established a clear

association between MORs in dSPNs and DORs in iSPNs, they

did not report evidence of MORs in iSPNs, presumably due to

oversampling of SPNs in the more prominent matrix compart-

ment. By targeting patches for analysis, we observed co-expres-

sion of MORs and DORs in iSPNs and verified this functionally.

This result highlights that classic models of striatal pathway dif-

ferences are not generally applicable to patches and requires

that patch iSPNs be considered in future studies concerning

MOR function in the striatum. Mapping the opioid receptors

to dSPNs and iSPNs also provided further insight into the func-

tional site of action of enk. The selective expression of DORs

in iSPNs indicates a presynaptic site of action, although the
uron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc. 1235
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Figure 8. Summary Model of Enkephalin

Modulation of the Patch Microcircuit

Patches and matrix receive different cortical in-

puts and locally process information with different

contributions from PV interneurons. Local inhibi-

tion suppresses repetitive, high-frequency firing in

response to cortical drive. By reducing inhibition

from SPN collaterals via activation of MORs on

dSPNs and iSPNs and DORs on iSPNs, enkeph-

alin facilitates information flow through patches,

but not matrix.
electrophysiological data presented do not conclusively support

either a pre- or post-synaptic mechanism. Because MORs are

expressed in both pathways, similar inferences cannot be

made and the site of action of this receptor remains to be

determined.

One major question that emerges from our study is how

DOR-mediated modulation of inhibition is restricted to iSPN

collaterals in patches. Analysis by FISH clearly demonstrates

uniform expression of DORs throughout the striatum, with

neither the number ofOprd1+ cells nor the number of transcripts

expressed in each cell being different between compartments.

All prior anatomical studies using radiolabeled DOR ligands

also report a uniform distribution. Yet in the matrix we observed

no suppression of electrically evoked inhibition or facilitation of

spiking in response to cortical drive in the presence of enk (but

see Jiang and North, 1992; Miura et al., 2007). The cellular mech-

anism underlying this compartmental specificity requires further

investigation.

We and others have noted relatively low expression levels of

enk in patches in comparison to matrix in mice (Figure S4) (Gray-

biel and Chesselet, 1984; Koshimizu et al., 2008; Tajima and Fu-

kuda, 2013). Although this distribution supports a role for enk in

intercompartmental communication, it is possible that dynor-

phin, a kappa opioid receptor agonist that can activate MOR

and DOR with substantial potency (Pennock and Hentges,

2014; Toll et al., 1998; Zhang et al., 1998), serves as a local ligand

in patches. Additionally, prodynorphin contains a copy of leu-

enk. However, the vast majority of dynorphin appears to be

transported out of striatum to axonal release sites in the substan-

tia nigra (Besson et al., 1990; Chesselet and Graybiel, 1983;

Fallon and Ciofi, 1990). Nonetheless, it is possible that enk

and dynorphin both disinhibit patch SPNs via inter- and intra-

compartmental signaling.

Implications for Striatum-Dependent Behavior
The anatomical evidence that patch dSPNs provide direct input

to SNc dopamine neurons suggests that patches are uniquely
1236 Neuron 88, 1227–1239, December 16, 2015 ª2015 Elsevier Inc.
positioned to control dopamine release

in striatum. Our findings imply that enk

could indirectly influence striatal dopa-

mine levels by selectively modulating

patch output. Indeed, there is evidence

that local enk administration promotes

dopamine metabolism in dorsal striatum

(Biggio et al., 1978). Such an interaction
would provide a route for integration of sensorimotor and limbic

signals.

Our results suggest that future studies into the behavioral sig-

nificance of opioids in dorsal striatum should consider effects via

DORs. Due to the clear role of MORs in addiction, most prior

studies into opioid signaling in striatum have focused on MORs

in the context of behavioral reinforcement (Burkett et al., 2011;

Cui et al., 2014; DiFeliceantonio et al., 2012). However, local

administration of opioids is not inherently rewarding in dorsal

striatum (Bals-Kubik et al., 1993; van der Kooy et al., 1982).

Optogenetic stimulation and inhibition of excitatory inputs to

dorsomedial patches was recently shown to impact cost-benefit

decision making in rats (Friedman et al., 2015). Critically, the in-

fluence of stimulation was context dependent. Our data raise the

possibility that by sensitizing patch SPNs to excitatory input

through disinhibition, opioids could contribute to such deci-

sion-making processes by providing a context signal.

In this study, we examined opioid modulation in the dorsal

striatum, with the expectation that enk actions through MORs

would provide compartment-specificity. Instead, we found only

a minor role for MORs, despite their striking abundance in

patches, suggesting that the primary role of MORs in patches

is not to mediate suppression of inhibition. Indeed, MORs are

most prominently localized in SPN dendrites and dendritic

spines (Wang et al., 1996). Given the lack of compartment-spe-

cific modulation of excitatory transmission and the relatively

weak MOR-dependent modulation of inhibition, we speculate

that these post-synaptic receptors may play a role in the gating

of synaptic plasticity and tuning cellular responses to other neu-

romodulators such as dopamine.

EXPERIMENTAL PROCEDURES

Mice

Pdyn-EGFP transgenic mice (GENSAT, founder line BD193) (Gong et al., 2003)

were crossed with other transgenic mice (as described in the appropriate

figure legends) and maintained on a C57BL/6 background. A full list of

mouse strains is provided in the Supplemental Experimental Procedures. All



experimental manipulations were performed in accordance with protocols

approved by the Harvard Standing Committee on Animal Care following guide-

lines described in the US NIH Guide for the Care and Use of Laboratory

Animals.

Stereotaxic Intracranial Injection

Male and female mice (postnatal day 2–9) were anesthetized with isoflurane

and placed in a small animal stereotaxic frame (David Kopf Instruments). After

puncturing the skin and skull under aseptic conditions, AAVs were injected

(0.5–1 ml total volume) bilaterally through a pulled glass pipette at a rate of

100 nl/min using a UMP3 microsyringe pump (World Precision Instruments).

Depending on the size of the mouse, injection coordinates ranged between

0 to +0.5 mm from bregma, 0.5 to 1.0 mm lateral, and 1.8 to 2.3 mm below

pia for dorsal striatum. After surgical procedures, mice were returned to their

home cage for >21 days to allow for maximal gene expression.

Immunohistochemistry

Brain tissue was fixed using 4% paraformaldehyde and processed using stan-

dard methods, as described in the Supplemental Experimental Procedures,

which also lists all antibodies used. Whole sections were imaged with an

Olympus VS110 slide scanning microscope using a 103 objective. Mosaic im-

ages were automatically constructed by the microscope’s OlyVIA software.

For Figures 1B, 2A, and 2B, high-resolution images of regions of interest

were subsequently acquired with a Leica SP8 X confocal microscope using

a 203 0.75 NA oil immersion objective (Harvard NeuroDiscovery Center).

Images represent maximum intensity projections of 15–25 mm (Figure 1B) or

40–80 mm (Figures 2A and 2B) confocal stacks.

FISH

Mice were deeply anesthetized with isoflurane and decapitated, and their

brains were quickly removed and frozen in tissue freezing medium on dry

ice. Brains were cut on a cryostat (Leica CM 1950) into 30 mm sections,

adhered to SuperFrost Plus slides (VWR), and immediately refrozen.

Samples were fixed 4% paraformaldehyde, processed according to ACD

RNAscope Fluorescent Multiplex Assay manual, and coverslipped with

ProLong antifade reagent (Molecular Probes). Sections were imaged on a

Leica SP8 X confocal microscope using a 633 1.4 NA oil immersion objec-

tive (Harvard NeuroDiscovery Center). Tiled z stacks (3–5 mm) were ob-

tained to cover large areas around patches, visually identified by high

levels of Pdyn signal.

Image Analysis

SPN cell density and EGFP/tdTomato co-localization were determined

using confocal images of sections from Pdyn-EGFP and Pdyn-EGFP;Drd1a-

tdTomato mice stained with the appropriate antibodies, as described in the

Supplemental Experimental Procedures. FISH images were analyzed using a

custom macro in Image J, as described in the Supplemental Experimental

Procedures.

Acute Brain Slice Preparation

Coronal brain slices (300-mm thick) were obtained from 28- to 35-day-old mice

(bothmale and female) using standard techniques, as described in the Supple-

mental Experimental Procedures. Briefly, animals were perfused with ACSF,

brains were sliced in ice-cold choline-based solution, recovered in at 34�C
in ACSF, and subsequently maintained at room temperature (20�C–22�C)
until use.

Electrophysiology

Detailed procedures are available in the Supplemental Experimental Proce-

dures. Briefly, slices were placed in a recording chamber mounted on an up-

right customizedmicroscope (Olympus BX51WI) and continuously superfused

(4 ml/min) with ACSF warmed to 31�C–33�C for whole-cell voltage-and cur-

rent-clamp recordings. Patch pipettes (2–4 MU) pulled from borosilicate glass

(G150F-3, Warner Instruments) were filled either with ACSF for cell-attached

current clamp recordings, a Cs+-based low Cl� internal solution or a Cs+-

based high Cl� internal solution (Figures 6A, S7E, and S7F, only) for whole-

cell voltage-clamp recordings, or with a K+-based low Cl� internal solution
Ne
for whole-cell current-clamp recordings. To electrically evoke IPSCs,

simulating electrode pipettes were placed nearby the recorded cell (�50–

150 mm) within the same compartment, and a brief pulse (0.5 ms, 20–80 mA)

was delivered at 20-s intervals. To activate ChR2-expressing cells and axons,

light from a 473 nm laser (Optoengine) was focused on the back aperture of the

microscope objective to produce wide-field illumination with brief pulses of

light (2 ms–2 s duration; 0.2–50 mW$mm�2 under the objective, see Supple-

mental Experimental Procedures) at 20 s intervals.

UV Uncaging

UV uncaging (Figures S7G, S8C, and S8D) was carried out as described in

Banghart and Sabatini (2012) (see Supplemental Experimental Procedures).

Collimated UV illumination was applied over the entire field of view, which typi-

cally covered an entire patch.

Electrophysiological Data Acquisition and Analysis

Membrane currents and potentials were amplified and low-pass filtered at 3

kHz using a Multiclamp 700B amplifier (Molecular Devices), digitized at 10

kHz, and acquired using National Instruments acquisition boards and a

custom version of ScanImage written in MATLAB (Mathworks). Electrophysi-

ology and imaging data were analyzed offline using Igor Pro (Wavemetrics),

custom MatLab scripts, and ImageJ (NIH). In figures, current-clamp and

voltage-clamp traces represent the averaged waveform of 3–5 consecutive

acquisitions. Peak amplitudes were calculated by averaging over a 2-ms win-

dow around the peak. To determine magnitude of modulation by enk, the peak

amplitude of six consecutive IPSC amplitudes were averaged once the IPSC

reached a stable plateau (4 to 5 min for enk and DAMGO and 6–8 min for

SNC-80). IPSC amplitudes were normalized to baseline averages (six consec-

utive traces immediately prior to drug application).

Statistical Tests

For electrophysiological recordings with bath applications of drugs, signifi-

cance of modulation was tested by comparing the IPSC peak amplitudes

following drug application to the baseline amplitudes using Wilcoxon’s sign-

ranked test. In the text, this p value appears with the average normalized

IPSC and ‘‘n’’ values for a given condition. Wilcoxon’s sign-ranked test was

also used to compare IPSC amplitudes induced when stimulating electrode

is placed inside or outside the patch (Figure 3). To compare the expression

levels of Pdyn, Oprm1, and Oprd1 transcripts in each patch or matrix cell,

we used the two-sample Kolmogorov-Smirnov test (Figure S6). For all other

comparisons between different datasets (both images and electrophysiolog-

ical data), summary values were reported asmean ± SEM and were compared

to each other using the Mann-Whitney U test. For all comparisons, p values

smaller than 0.05 were denoted with an asterisk.
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