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G-protein-coupled-receptor (GPCR) signaling is exquisitely controlled to achieve spatial
and temporal specificity. The endogenous protein kinase inhibitor peptide (PKI) confines
the spatial and temporal spread of the activity of protein kinase A (PKA), which integrates
inputs from three major types of GPCRs. Despite its wide usage as a pharmaceutical
inhibitor of PKA, it was unclear whether PKI only inhibits PKA activity. Here, the effects of
PKI on 55 mouse kinases were tested in in vitro assays. We found that in addition to
inhibiting PKA activity, both PKI (6–22) amide and full-length PKIα facilitated the activation
of multiple isoforms of protein kinase C (PKC), albeit at much higher concentrations than
necessary to inhibit PKA. Thus, our results call for appropriate interpretation of
experimental results using PKI as a pharmaceutical agent. Furthermore, our study lays
the foundation to explore the potential functions of PKI in regulating PKC activity and in
coordinating PKC and PKA activities.
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INTRODUCTION

G-protein-coupled receptor (GPCR) signaling is highly regulated, and its exquisite spatial and
temporal specificity has important implications on its function. Spatially, GPCRs and their
signaling components are located in specific cell types, subcellular compartments, and
microdomains, and their spatial localization specifies their functions (Smith et al., 2006;
Chen and Sabatini, 2012; Lur and Higley, 2015; Jong et al., 2018; Thomsen et al., 2018;
Lobingier and von Zastrow, 2019; Weinberg et al., 2019). Temporally, GPCR activation can
lead to transient, sustained, or oscillatory patterns of intracellular signals, and the timing of
GPCR activation relative to synaptic inputs is critical for how synapses are modified in the
nervous system (Gu and Yakel, 2011; Muñoz and Rudy, 2014; Yagishita et al., 2014; Grundmann
and Kostenis, 2017). Thus, understanding the regulators of the spatial and temporal features of
GPCR signaling is important to understand GPCR functions.

One important intracellular integrator that lies downstream of multiple GPCRs is protein kinase
A (PKA) (Gilman, 1995; Chen et al., 2017). PKA is activated by cyclic AMP (cAMP), which is
produced by adenylate cyclases (ACs) (Krebs et al., 1959; Sutherland et al., 1968; Gilman, 1995). AC
activity is stimulated by Gαs-coupled receptors and inhibited by Gαi-coupled receptors (Gilman,
1995). Furthermore, we recently discovered that endogenous Gαq-coupled receptors also activate
hippocampal PKA (Chen et al., 2017). Therefore, three out of the four classes of GPCRs converge to
regulate PKA activity. Furthermore, PKA phosphorylates diverse substrates to regulate synaptic and
cellular functions, both within and outside the nervous system (Brandon et al., 1997; Greengard,
2001). Therefore, PKA is a biochemical integrator of signaling from numerous GPCRs that exert
important cellular and physiological functions.
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The spatial and temporal specificity of PKA is under exquisite
control, notably by the A-kinase-anchoring proteins (AKAPs),
the regulatory subunits of PKA, and the endogenously expressed
PKA inhibitory peptide, PKI (Walsh et al., 1971; Taylor et al.,
1990; Dalton and Dewey, 2006; Smith et al., 2006). PKI binds to
the catalytic subunit of PKA, thereby preventing it from being
active (Ashby and Walsh, 1972, Ashby and Walsh, 1973) despite
release from a PKA regulatory subunit. Synaptic stimulation
decreases the expression of one of the isoforms of PKI, PKIα
(De Lecea et al., 1998). Furthermore, chronic infusion of antisense
pkiα reduces neuronal excitability and eliminates hippocampal
plasticity (De Lecea et al., 1998). Therefore, PKI inhibits PKA
activity and has important cellular functions.

In addition to the important functions of endogenous PKI,
shorter peptides of PKI, for example PKI (6–22) amide, are widely
used as pharmaceutical agents to inhibit PKA activity (Cheng
et al., 1986; Glass et al., 1989a, Glass et al., 1989b). However, it was
unclear if PKI inhibits only PKA or if it inhibits other enzymes as
well. Previous studies examined the effect of PKI on a few kinases,
including protein kinase G (PKG) and protein kinase C (PKC)
(Gill et al., 1976; Cheng et al., 1986; Glass et al., 1986; Day et al.,
1989; Smith et al., 1990), but the effects of PKI on a broad panel of
kinases were not known.

Here, we analyzed the effect of PKI on 55 kinases, selected
based on their similarity to PKA and their expression patterns.
We confirmed that both PKI (6–22) amide and full length PKIα
inhibited PKA activity with sub-nanomolar IC50. In addition, we
found that at high concentrations, PKI (6–22) amide inhibited
calcium/calmodulin-dependent protein kinase I (CamK1).
Surprisingly, at concentrations often used in pharmacology
experiments, PKI (6–22) amide facilitated the activity of
multiple PKC isoforms, rho-associated, coiled-coil-containing
protein kinase 1 (ROCK1), and p70S6 Kinase (p70S6K).
Synthesized full length PKIα also facilitated the activity of
ROCK1 and multiple PKC isoforms. These results are
important not only for interpretation of experiments using
PKI as a pharmacological agent, but also sheds light on
potential biological functions of endogenous PKI.

MATERIALS AND METHODS

Protein Kinase Inhibitor Peptide
PKA inhibitor (PKI) fragment (6–22) amide was purchased from
Tocris (Cat. No. 1904). Full length mouse PKIα was synthesized
from L amino acids and then purified with high-performance
liquid chromatography (HPLC) by the Koch Institute
Biopolymers and Proteomics Facility. Mouse PKIα shares 74
out of the 76 amino acids with human PKIα, and the two
differing amino acids are not in the 6–22 region.

Kinase Assays
Kinase assays were conducted in cell-free, in vitro assays with
purified kinases with the Thermo Fisher Scientific SelectScreen
Kinase Profiling Service. CamK1, DAPK1, and NUAK1 (ARK5)
were screened with the Adapta Universal Kinase Assay, and the
rest of the kinases were screened with the Z′-LYTE Peptide

Kinase Assay (Rodems et al., 2002) (Figure 1B). All kinases
used were human proteins expressed in and purified from Sf9
insect cell culture. Only one lot of kinase was used for each assay.
Kinase activity was determined and reported on the lot-specific
Certificate of Analysis at Thermo Fisher web site. The kinase
concentration used in the assay was adjusted to achieve ∼25%
substrate phosphorylation, with 10–50% as the allowable range in
the 0% inhibition control. The % inhibition value was calculated
with the formula specified in the assay manuals.

Data Analysis
All the raw data can be found in Supplementary Table S1. Dose-
response curves were fit using variable-slope nonlinear regression
(4 parameters) in GraphPad Prism (GraphPad Software).
Kruskal-Wallis followed by Dunn’s Multiple Comparison Test
was used to evaluate statistical significance in Supplementary
Figure S1.

RESULTS

Kinase Screen to Determine the Specificity
of Protein Kinase Inhibitor Peptide
To investigate whether PKI has effects on kinases beyond PKA,
we screened the effects of PKI on a panel of kinases. There are
about 510 kinases encoded in the mouse genome, and screening
all of them would be too costly. Therefore, we limited our
selection of kinases to screen via a tiered system (Figure 1A).
First, among the 510 kinases, 322 can be screened for activity
enhancement or inhibition via either Adapta Universal Kinase
Assay or the Z′-LYTE Peptide Kinase Assay. These are in vitro,
cell-free assays using purified kinases and therefore suitable for
measuring direct kinase action. Second, since PKA is a serine/
threonine kinase, we deduced that PKI would most likely target
other serine/threonine kinases. Thus, we limited our screen to
the 191 serine/threonine kinases among the 322 kinases that can
be screened. Third, among the 191 serine/threonine kinases, we
reasoned that PKI would mostly act on two kinase groups: the
AGC kinases of which PKA is a member, and the CamK kinases
since these share substrate similarities with PKA. In total,
among the 191 serine/threonine kinases, 81 kinases belong to
the AGC and CamK groups. Finally, since PKI plays important
roles in neuronal function by regulating synaptic plasticity, and
small peptide of PKI has been extensively used as
pharmaceutical agent to inhibit PKA activity in the cortex,
striatum, and hippocampus, we further narrowed down to 55
kinases that are expressed in these three brain regions based on
RNA sequencing data (Cembrowski et al., 2016; Saunders et al.,
2018; Zeisel et al., 2018). Therefore, we screened the effects of
PKI on 55 kinases, which were selected based on the availability
of kinase screen, kinase groups, and expression pattern of these
kinases.

Fifty-two kinases were screened with the Z′-LYTE Peptide
Kinase Assay (Figure 1B) (Rodems et al., 2002) and three kinases
were screened with the Adapta Universal Kinase Assay. In the Z′-
LYTE assay, the kinase substrate is flanked by a donor and
acceptor fluorophore. Phosphorylation of the substrate
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prevents subsequent cleavage by a site-specific protease, and thus
enables Förster Resonance Energy Transfer (FRET) between the
two fluorophores. In contrast, kinase inhibition results in no
phosphorylation, and the substrate can therefore be cleaved by
the protease, resulting in no FRET. The degree of FRET is
therefore correlated with kinase activity. For three of the 55
kinases [CamK1, death-associated protein kinase 1 (DAPK1),
and AMPK-related protein kinase 5 (ARK5)], Z′-LYTE assays
were not available, and Adapta Universal Kinase Assay was used
instead. Adapta is a fluorescence-based immunoassay that detects
ADP produced by kinase activity. In summary, two cell-free
kinase assays were used to screen for the effect of PKI on
fifty-five serine/threonine kinases.

The Effect of Protein Kinase Inhibitor
Peptide (6–22) Amide on a Panel of Kinases
PKI (6–22) amide was used to for the initial screen because this
short peptide is a potent inhibitor of PKA and has been widely
used to inhibit PKA activity in numerous studies. We first
determined with a high concentration of PKI (6–22) amide
(5 µM) the kinases whose activities are PKI sensitive at all and
therefore merit further studies with dose response curves. As

expected, 5 µM PKI (6–22) amide effectively inhibited PKA
activity by 85%. PKI (6–22) amide had no effect on the
majority of other kinases. However, at 5 μM, PKI (6–22)
amide inhibited five other kinases by more than 10%.
Surprisingly, PKI (6–22) amide (5 µM) enhanced the activity
of 20 kinases by more than 10% (expressed in Figure 2 as negative
inhibition). Notably, the eight most facilitated kinases were all
isoforms of the PKC family. The amount of facilitation ranged
from 59 to 93% (Figure 2).

Since we were surprised by the facilitating effect of PKI (6–22)
amide on the PKC family, we set out to disambiguate the potential
effect of PKI (6–22) amide on PKC in the kinase reaction, on the
protease reaction (development reaction), or on fluorescence
itself. PKI (6–22) amide did not induce any significant
fluorescence readout change when added in or after the
development reaction, but did induce a large change when
added in the kinase reaction for PKC epsilon (Supplementary
Figure S1). These control experiments indicate that PKI (6–22)
amide indeed facilitated PKC activity.

To determine the concentration at which PKI (6–22) amide
exerts effects, the dose-response curves of PKI (6–22) amide on
activities of 11 selected kinases were measured. These kinases
included 1) PKA, 2) all five other kinases whose activity is

FIGURE 1 | Kinase selection and screening strategy for the effect of PKI on kinases. (A) Schematic showing how 55 kinases were selected out of ∼510 mouse
kinases for screening of the effect of PKI on kinase activity. (B) Schematic illustrating the principle of the Z′-LYTE Kinase Assay from Thermo Fisher (Rodems et al., 2002).
With no inhibition, the kinase phosphorylates the kinase substrate that separates between the donor (coumarin) and acceptor (fluorescein). The phosphorylation
prevents subsequent cleavage by a site-specific protease. Thus, the uncleaved phosphorylated product will exhibit FÖrster Resonance Energy Transfer (FRET).
With effective kinase inhibition, the peptide is not phosphorylated and is subsequently cleaved by the protease, and hence there is no FRET.
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inhibited by more than 10% at 5 μM, and 3) five selected
kinases whose activity is increased by more than 10% at
5 µM – three of these are PKC isoforms. The IC50 of PKI
(6–22) amide for PKA was 0.61 nM, comparable to the value
determined from previous studies (Glass et al., 1989a)
(Figure 3A). PKI (6–22) amide altered the other kinase
activities at much higher concentrations (Figures 3A,B).
However, at the PKI concentrations often used in
pharmacology experiments (1–10 µM), there were clear
effects on several kinases. For example, at 5 μM, PKI (6–22)
amide facilitated PKCα and PKCζ by more than 50%. Even at

1.7 µM, PKI (6–22) amide inhibited CamK1 activity by 30%,
and facilitated PKCα activity by 33%.

The Effect of Full Length Protein Kinase
Inhibitor Peptide α on Kinase Activities
Full length PKI may display different potency and specificity
compared with the short peptide. Therefore, although the screen
with PKI (6–22) amide above was useful in determining the
specificity of PKI as pharmaceutical agents, it is important to
perform dose-response curves with full length PKI to assess

FIGURE 2 | PKI (6–22) amide (5 µM) inhibits some kinases but facilitates others. This bar graph shows the % inhibition of 55 kinases by PKI (6–22) amide (5 µM).
The kinases are sorted from the most inhibited (top) to the most facilitated (bottom). Dotted lines show ±10% inhibition. N � 2 for each enzyme. The graph shows
individual data points (aligned dots) and median with range (lines).
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whether endogenous PKI may alter activities of kinases other
than PKA. Full length mouse PKIα protein was synthesized and
purified by High-Performance Liquid Chromatography (HPLC),
and was subsequently used to determine the dose response curve
of seven kinases (Figure 4).

PKIα inhibited PKA activity with an IC50 of 0.11 nM, with higher
potency thanPKI (6–22) amide (Figure 4). PKIα did not have significant
effect on CamK1 or p70S6K (Figure 4). In addition, PKIα also facilitated
multiple PKC isoforms and ROCK1 at much higher concentrations
(1–5 µM) (Figure 4). At 5 μM, full length PKIα facilitated PKCα,
PKCβII, PKCζ, and ROCK1 by 25, 36, 42, and 24% respectively.

DISCUSSION

In order to understand the specificity of PKI on kinases, we
screened both PKI (6–22) amide and full length PKIα against a

panel of 55 kinases. In addition to inhibiting PKA activity, PKI
(6–22) amide also inhibited CaMK1, and facilitated the activities
of p70S6K, ROCK1, and multiple PKC isoforms. Full length
PKIα, at high concentrations, also facilitated the activity of
ROCK1 and multiple PKC isoforms. These results inform the
design and interpretation of experiments using PKI as a
pharmacological agent, provide a starting point to explore
novel functions of endogenous PKI, and raise the interesting
possibility that PKI may act as a molecular switch between PKA
and PKC activity.

Facilitating Effects of Protein Kinase
Inhibitor Peptide on Protein Kinase C
We found that in addition to inhibiting PKA activity, PKI also
facilitated the kinase activity of multiple PKC isoforms. This was
surprising because previous studies found little influence of PKI

FIGURE 3 |Dose-response curves of the effects of PKI (6–22) amide on kinase activity. (A)Dose-response curve of PKI (6–22) amide on inhibited kinases. (B)Dose
response curve of PKI (6–22) amide on facilitated kinases. The 5 µM PKI(6–22) amide replicates for the relevant enzymes from Figure 2 were also plotted with the 5 µM
PKI(6–22) amide data here to show variability of data. N � 2–4 for each PKI concentration and each enzyme. The graph shows individual replicates (staggered dots) and
fitted curves for each enzyme.
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on PKC (Day et al., 1989; Smith et al., 1990). In principle, this
could be due to PKI interfering with 1) the protease reaction, 2)
the fluorescence detection, or 3) the FRET response. Interference
with the protease reaction was minimal, because PKI had very
little effect on the control assay with unphosphorylated cleavable
substrates (PKI + no ATP vs. no ATP conditions in the kinase
reaction). In addition, adding PKI in the protease development
reaction for PKC did not result in a significant FRET change
(Supplementary Figure S1). Similarly, neither full length PKIα
nor PKI (6–22) amide is autofluorescent, as evidenced by the test
compound fluorescence interference control with no kinase/
peptide mixture. Finally, PKI did not have any significant
effects on FRET itself, because the FRET readout was not
significantly different when PKI was added after the
development reaction. These data indicate that PKI facilitated
the kinase activity of multiple PKC isoforms.

Several technical differencesmay explain the differences between
our results and previous studies that did not find significant
influence of PKI on PKC. First, these studies differed in the
form of PKI used: Smith et al. (Smith et al., 1990) used PKI-tide
whose sequence is IAAGRTGRRQAIHDILVAA, whereas we used
PKI (6–22) amide whose sequence is TYADFIASGRTGRRNAI
(bolded amino acids are the shared fragment, and differences in
sequences within the shared fragment are underlined). Second, the
forms of PKC used are different: we used purified human
recombinant PKC isoforms expressed in insect cells, whereas
previous studies used partially purified PKC without clear
distinction of isoforms (Day et al., 1989; Smith et al., 1990).
Finally, although previous results did not reach statistical
significance, Day et al. (Day et al., 1989) showed a mild
enhancement of PKC activity by full length PKI in a cell-based
assay with PKI transfection.

FIGURE4 |Dose-response curves of the effects of full length PKIα on kinase activity. Dose-response curve of full length PKIα on the activities of seven kinases. Note
a negative value in % inhibition means PKI facilitates kinase activity. N � 2 for each concentration. The graph shows individual replicates (staggered symbols) and fitted
curves.
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Interpreting Pharmacology Experiments
with Protein Kinase Inhibitor Peptide
PKI (6–22) amide and other short peptides of PKI are widely
used in pharmacological experiments to inhibit PKA activity.
They are often used at between 1 and 10 μM, either
intracellularly through a whole-cell recording pipette, or
applied in the bath in cell-permeant myristoylated forms.
Here, we found that PKI (6–22) amide, at these
concentrations, also inhibits CamK1, and facilitates the
activity of multiple PKC isoforms, possibly acting as a
positive allosteric modulator. Future directions will involve
testing the effects of PKI (6–22) amide on kinase activity in a
cell-based system. Importantly, for any users of PKI to perturb
PKA functions, these additional targets of PKI need to be taken
into account to design experiments and interpret results.

Despite the additional targets of PKI identified in our study,
PKI seems more specific than the other commonly used PKA
inhibitors, H89 and KT 5720 (Murray, 2008). This may be due to
their different mechanisms of action. PKI binds to the catalytic
subunit of PKA with high affinity by serving as a pseudosubstrate,
whereas H89 and KT 5720 competitively inhibits ATP binding on
the PKA catalytic subunit. The off-target effects of these reagents
have partial overlap (Murray, 2008). For example, PKBα is
inhibited by all three compounds, whereas PDK1 activity is
facilitated by PKI (6–22) amide but inhibited by KT5720.
Similarly, H89 inhibits ROCK2 potently but PKI has little
effect on ROCK2. Since all three reagents are commonly used
as pharmacological inhibitors of PKA, their non-selective actions
need to be carefully considered to interpret experimental results.

Significance of Protein Kinase Inhibitor
Peptide Effects for Biology
We found that full length PKIα, one of the endogenously
expressed isoforms, enhanced the activity of ROCK1 and
multiple PKC isoforms at high concentrations. This raises the
interesting possibility that PKI acts as a molecular switch to
regulate the balance between PKA and PKC activity. However,
the validity of this hypothesis depends on the endogenous
concentration of PKIα, which is hard to determine, partially
because the local concentrations of PKIα within a subcellular
compartment may be higher than what can be determined with

traditional biochemical methods. Our study therefore lays the
foundation for future explorations on how endogenous PKI
impacts cellular signaling and confines it in space and time
through non-classical targets.
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