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Abstract

The mammalian striatum receives inputs from many cortical areas, but the existence of a direct axonal projection from the
primary visual cortex (V1) is controversial. In this study we use anterograde and retrograde tracing techniques to
demonstrate that V1 directly innervates a topographically defined longitudinal strip of dorsomedial striatum in mice. We
find that this projection forms functional excitatory synapses with direct and indirect pathway striatal projection neurons
(SPNs) and engages feed-forward inhibition onto these cells. Importantly, stimulation of V1 afferents is sufficient to evoke
phasic firing in SPNs. These findings therefore identify a striatal region that is functionally innervated by V1 and suggest that
early visual processing may play an important role in striatal-based behaviors.
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Introduction

Understanding the functional circuitry of the basal ganglia

requires a thorough characterization of the sources of afferents to

the striatum – the principal input structure of the basal ganglia –

and their organization within it. Cortex provides one of the major

excitatory inputs to the striatum, which was first described by

Webster in the 1960s in rat and cat [1,2]. Similar studies

subsequently emerged from other groups describing corticostriatal

afferents in rabbit and monkey [3,4]. These studies indicated that

all major cortical areas project to the striatum, noting that inputs

from visual cortices targeted rather restricted striatal areas

compared to other cortical regions. However, these early studies

were performed using focal cortical lesions followed by a silver

impregnation of degenerating axons, making it difficult to isolate

specific areas of visual cortex and their striatal target regions.

Several subsequent investigations have provided conflicting

findings: whereas some studies revealed the existence of small

corticostriatal inputs from V1 in rodents [5–8], others have failed

to observe projections originating in V1 in the striatum of

monkeys, cats and rodents [9–14]. Functional studies have

reported visually-driven units in the dorsal striatum of rodents,

cats and monkeys [15–18], but the relative contributions of

primary and extrastriate visual cortices, and of other visual

structures such as the superior colliculus are difficult to distinguish

in vivo. It therefore remains unclear whether V1 functionally

innervates the dorsal striatum.

In this study, we examined whether V1 establishes a direct,

functional connection with the striatum using a combination of

anatomical tracing methods, electrophysiology and optogenetics.

We demonstrate that corticostriatal afferents originating in V1

form strong excitatory connections with both direct- and indirect-

pathway striatal projection neurons (referred to as dSPNs and

iSPNs, respectively), indicating that V1 may directly participate in

visually-evoked basal ganglia behaviors.

Methods

Mice
All experimental manipulations were performed on mice in

accordance with the protocols approved by the Harvard Standing

Committee on Animal Care and with the guidelines described in

the US National Institutes of Health Guide for the Care and Use of
Laboratory Animals. All animals used in this study carried the

Rbp4-Cre transgene (GENSAT #RP24-285K21). For imaging

studies, some Rbp4-Cre mice were bred to mice bearing an allele

encoding EGFP expressed in a Cre-dependent manner under a

CAG promoter (referred to as ZSGreen1 reporter transgene; Ai6;

the Jackson Laboratory, stock number 007906) to reveal the

distribution of Cre+ cells. For electrophysiology experiments Rbp4-

Cre animals were bred to Drd2-EGFP transgenic mice (GENSAT

#RP23-161H15), which express EGFP under control of a

bacterial artificial chromosome containing the type 2 dopamine

receptor genomic locus to permit distinction between the direct-

and indirect-pathways SPNs. All animals were maintained on a

C57Bl/6 background. Both male and female animals were used.

Viruses and stereotaxic intracranial injections
Conditional expression of EGFP or of the H134R variant of

ChR2 in Cre-containing neurons was achieved using recombinant

adeno-associated viruses (AAVs) encoding a double-floxed invert-

ed open reading frame (DIO) of ChR2-mCherry or EGFP, as
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described previously [19,20]. Briefly, for intracranial injections,

mice (postnatal day 30–40) were anesthetized with isoflurane and

placed in a small animal stereotaxic frame (David Kopf

Instruments). After exposing the skull under aseptic conditions, a

small burr hole was drilled for microinjections. All microinjections

were performed through a pulled glass pipette using a UMP3

microsyringe pump (World Precision Instruments). Virus (AAV-

DIO-EGFP or AAV-DIO-ChR2-mCherry) was injected into V1

(0.3 mm lateral from Lambda, and 0.6 mm below pia) at the rate

of 50 nL per minute (500–750 nL total volume). Fluorescent latex

microspheres (Red Retrobeads (RRB), Lumafluor) were injected

into dorsomedial striatum (0.9 mm anterior and 1.5 mm lateral

from Bregma, 2.0 mm below pia) at the rate of 100 nL per minute

(150 nL total volume). Following the injection, the skin was

sutured using Vicryl 7.0 silk sutures (Ethicon) and mice were

returned to their home cage for at least 21 days for AAV injections

and 7 days for experiments using fluorescent retrobeads.

Tissue processing for imaging
Mice were deeply anesthetized with isoflurane and perfused

transcardially with 4% paraformaldehyde in 0.1 M sodium

phosphate buffer. Brains were post-fixed for 24 hours at room

temperature, washed in phosphate buffer saline (PBS) and

sectioned (50 mm) coronally using a vibratome (Leica VT1000s).

Brain sections were mounted on superfrost slides, dried and

coverslipped with ProLong antifade reagent containing DAPI

(Molecular Probes). Whole brain sections were imaged with an

Olympus VS110 slide-scanning microscope. High-resolution

images of regions of interest were subsequently acquired using

an Olympus FV1000 confocal microscope (Harvard Neurobiology

Imaging Facility). All confocal images were acquired in a single

plane and processed using ImageJ.

Acute slice preparation and electrophysiology
Acute brain slices and whole-cell voltage-clamp recordings from

identified SPNs were obtained using standard methods, as

described previously [19,20]. Briefly, mice (50- to 80-days old)

were anesthetized by isoflurane inhalation and perfused transcar-

dially with ice-cold artificial cerebrospinal fluid (ACSF) containing

(in mM): 125 NaCl, 2.5 KCl, 25 NaHCO3, 2 CaCl2, 1 MgCl2,

1.25 NaH2PO4 and 11 glucose (290 mOsm per kg). Cerebral

hemispheres were removed, placed in cold choline-based cutting

solution consisting of (in mM): 110 choline chloride, 25 NaHCO3,

2.5 KCl, 7 MgCl2, 0.5 CaCl2, 1.25 NaH2PO4, 25 glucose, 11.6

ascorbic acid, and 3.1 pyruvic acid), blocked and transferred into a

slicing chamber containing ice-cold choline-based cutting solution.

Coronal slices of striatum (275 mm thick) were cut with a Leica

VT1000s vibratome, transferred for 10 min to a holding chamber

containing ACSF at 34uC and subsequently maintained at room

temperature (20–22uC) until use. All recordings were obtained

within 4 h of slicing. Both cutting solution and ACSF were

constantly bubbled with 95% O2/5% CO2. Individual slices were

transferred to a recording chamber mounted on an upright

microscope (Olympus BX51WI) and continuously superfused (2–

3 ml per minute) with ACSF at room temperature. Cells were

visualized through a 406 water-immersion objective with either

infrared differential interference contrast optics or epifluorescence

to identify EGFP+ iSPNs and striatal regions showing the highest

density of ChR2-mCherry+ axonal arbors. Epifluorescence was

used sparingly to minimize ChR2 activation before recording.

Whole-cell voltage- and current-clamp recordings were made from

dSPNs and iSPNs in dorsomedial striatum. dSPNs and iSPNs were

identified on the basis of the respective absence and presence of

EGFP fluorescence and their membrane properties. Patch pipettes

(2–4 MV) pulled from borosilicate glass (G150F-3, Warner

Instruments) were filled either with a Cs+-based low Cl2 internal

solution containing (in mM) 135 CsMeSO3, 10 HEPES, 1 EGTA,

3.3 QX-314 (Cl2 salt), 4 Mg-ATP, 0.3 Na-GTP, 8 Na2-

phosphocreatine (pH 7.3 adjusted with CsOH; 295 mOsm per

kg) for voltage-clamp recordings, or with a K+-based low Cl2

internal solution composed of (in mM) 135 KMeSO3, 3 KCl, 10

HEPES, 1 EGTA, 3.3 QX-314 (Cl2 salt), 4 Mg-ATP, 0.3 Na-

GTP, 8 Na2-phosphocreatine (pH 7.3 adjusted with KOH; 295

mOsm per kg) for current-clamp recordings. Bath solutions for

whole-cell recordings did not contain drugs unless specified

otherwise. For all voltage-clamp experiments, errors due to voltage

drop across the series resistance (,20 MV) were left uncompen-

sated. Membrane potentials were corrected for a ,8 mV liquid

junction potential. To activate ChR2-expressing fibers, light from

a 473 nm laser (Optoengine) was focused on the back aperture of

the microscope objective to produce wide-field illumination of the

recorded cell. Brief pulses of light (1 ms duration; 3–5 mW.mm22

under the objective) were delivered at the recording site at 30 s

intervals under control of the acquisition software. Recordings

from EGFP+ and EGFP2 cells were interleaved.

Data acquisition and analysis
Membrane currents and potentials were amplified and low-pass

filtered at 3 kHz using a Multiclamp 700B amplifier (Molecular

Devices), digitized at 10 kHz and acquired using National

Instruments acquisition boards and a custom version of Scan-

Image written in MATLAB (Mathworks). Electrophysiology data

was analyzed offline using Igor Pro (Wavemetrics) and imaging

data was analyzed using ImageJ (National Institutes of Health).

Averaged waveforms of 3–5 consecutive sweeps were used to

obtain current onset and peak current amplitude. Detection

threshold for IPSCs and EPSCs was set at 10 pA. Current onset

was measured using a threshold set at three standard deviations of

baseline noise. Peak amplitudes were calculated by averaging over

a 2 ms window around the peak. For experiments using drug

perfusions, peak amplitudes of three consecutive light-evoked

responses 3–4 min after drug perfusion onset were averaged,

normalized to baseline averages and compared statistically with

values obtained at corresponding times in control preparations

bathed in ACSF. Data (reported in text and figures as mean 6

s.e.m.) were compared statistically using a Mann-Whitney U test.

P values less than 0.05 were considered statistically significant.

Reagents
Drugs (all from Tocris) were applied by bath perfusion:

gabazine (SR95531; 10 mM), 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo(f)quinoxaline (NBQX; 10 mm), R-3-(2-carboxypiperazin-4-

yl)propyl-1-phosphonic acid (CPP; 10 mM).

Results

Anterograde labeling reveals a direct projection from V1
to dorsomedial striatum (DMS)

To address whether layer 5 pyramidal cells in primary visual

cortex (V1) project to the striatum of mice, we injected an adeno-

associated virus (AAV) encoding Cre-dependent EGFP into V1 of

Rbp4-Cre transgenic mice, which express Cre in a subset of layer 5

pyramidal neurons throughout cortex [21]. Projecting axon

bundles emerging from V1 were readily traced across sections

throughout the brain of 8 mice, and followed stereotyped

trajectories and innervation patterns in all brains studied

(Figure 1A–F). As axons exited V1, EGFP-labeled axons formed

a thick bundle that traveled ventrally in the ipsilateral external

A V1 Corticostriatal Projection
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capsule (Figure 1A–B). These axons innervated well-defined

projection areas, including the superior colliculus (Figure 1B)

and the dorsal part of the lateral geniculate nucleus (Figure 1C–

D), confirming the site of injection as V1 [22–24]. Interestingly,

V1 axons also left the external capsule (Figure 1D) to enter the

most posterior part of the ipsilateral striatum and then coursed

anteriorly within the striatum in tight axonal bundles lining dorsal

and medial regions. Terminal fields, which were identified by the

splaying of fibrils throughout the neuropil, were observed most

prominently in the anterior half of the DMS (Figure 1E–F).

Corticostriatal axons from V1 targeted a restricted longitudinal

strip of the ipsilateral DMS lining the lateral ventricle, forming two

dense innervation regions: one at the more dorsal aspect of the

strip and the other on its ventral side. At higher magnification,

sparse axons were occasionally detected in more medial parts of

dorsal striatum (data not shown). Interestingly, V1 neurons also

extended axons medially and anteriorly towards the corpus

callosum to innervate the contralateral V1 as well as the

contralateral DMS (not shown). These axonal projections were

comparatively much more sparse and weakly labeled, and were

consequently not studied further. Our results therefore reveal that

layer 5 pyramidal neurons in the mouse primary visual cortex

extend bilateral axonal projections into the striatum.

Retrograde labeling of V1 projections to DMS
To determine whether axons originating in V1 establish

synaptic contacts within the DMS, we employed a retrograde

labeling method using fluorescently labeled microspheres (referred

to as red retrobeads or RRBs) that are absorbed by the terminal

zones of axons and transported back to the cell body [25].

Retrobeads are not transported trans-synaptically and therefore

only label the soma of neurons that directly project into the

injection region. Following stereotaxic injection of RRBs in the

DMS (Figure 2A), we observed retrogradely labeled cells in several

brain regions known to innervate dorsal striatum, including the

substantia nigra pars compacta (SNc; Figure 2B) as well as the

intralaminar thalamus, a region providing the densest thalamic

input to the striatum [23] (Figure 2H). Importantly, we observed

dense retrograde labeling within V1, confirming that V1

innervates DMS. Interestingly, microsphere-labeled cells were

not found in either auditory (Figure 2B) or somatosensory cortex

(Figure 2H), indicating that these cortical areas do not extend

sizeable axonal arbors into the medial-most region of dorsal

striatum. These observations are consistent with the notion that

cortical inputs into the dorsal striatum are largely topographic,

with primary auditory cortex innervating primarily the posterior

portion of striatum and primary somatosensory cortex projections

occupying mainly the dorsolateral aspect of anterior striatum

([6,14], Allen Institute for Brain Science Mouse Brain Connectiv-

ity Atlas (http://connectivity.brain-map.org) [26]).

The majority of pyramidal neurons in somatosensory and motor

cortices that project to the striatum lie within the upper half of

layer 5, although corticostriatal neurons in layer 2/3 have also

been described [6,27,28]. Consistent with the distribution of

corticostriatal neurons in these other brain regions, most of the

retrogradely labeled cell bodies in V1 rested within layer 5

(Figure 2C): out of 1159 retrogradely-labeled cortical cells in V1

(n = 4 mice), 943 (81%) distributed to layer 5, while only 216 (19%)

were in layers 2/3 (Figure 2D). On rare occasions, cells in layer 6

were observed, but they constituted a negligible percentage of the

total number of corticostriatal neurons.

Because the transgenic line used in our anterograde study

(Rbp4-Cre; Figure 1) restricts Cre expression to layer 5 neocortical

neurons in V1, it represents an attractive tool for studying the

function of visual cortex neurons projecting to striatum. To

determine the fraction of corticostriatal neurons expressing Cre in

these mice, we injected red fluorescent retrobeads in the DMS of

Rbp4-Cre mice expressing EGFP in the soma of Cre-containing

neurons (ZSGreen1, Figure 2E). Out of 531 layer 5 cells in V1

that innervate striatum (RRB-positive), the majority (345, 65%)

also expressed Cre (EGFP+) and the remaining 186 cells (35%)

were EGFP2 (Figure 2G). This indicates that the Rbp4-Cre line

expresses Cre in two-thirds of layer 5 corticostriatal neurons,

confirming the usefulness of this line in labeling striatally-

projecting cortical neurons. Interestingly, the majority of neurons

double-labeled for EGFP and RBB distributed to upper layer 5,

suggesting that most of the DMS-projecting corticostriatal neurons

labeled in Rbp4-Cre mice are intratelencephalic (IT) cortical cells

[29–32].

V1 inputs into DMS drive action potentials in SPNs
To determine whether V1 corticostriatal neurons form func-

tional synaptic connections in the striatum, we expressed

channelrhodopsin (ChR2-mCherry) in V1 of Rbp4-Cre;Drd2-
EGFP mice and obtained recordings from direct- (dSPN) and

indirect-pathway striatal projection neurons (iSPNs) in coronal

sections of DMS (Figure 3A). Stimulation of V1 axons using 1 ms

light flashes reliably evoked action potentials in SPNs in both cell-

attached (n = 4; Figure 3B) and whole-cell current-clamp record-

ing configurations (n = 3; Figure 3C), indicating that corticostriatal

axons originating in V1 are functional and strong enough to

reliably depolarize SPNs above spike threshold. We used whole-

cell voltage-clamp recordings from SPNs to characterize the

synaptic conductances evoked by optogenetic activation of V1

axons. In SPNs clamped at 270 mV (the Cl2 reversal potential),

ChR2 stimulation reliably evoked large excitatory postsynaptic

currents (EPSCs) in both dSPNs and iSPNs (Figures 3D–E)

without significant differences in kinetics (not shown) or

mean amplitude of EPSCs across pathways (EGFP+ iSPN:

2376673 pA, n = 6; EGFP2 dSPN: 24066119 pA, n = 6;

P = 0.9, Mann-Whitney U test; Figure 3E). Data from both

neuronal populations were consequently combined for further

analyses. EPSCs in SPNs displayed short synaptic latencies at

ambient temperature (3.260.2 ms, n = 12; Figure 3F) and were

eliminated by a cocktail of a-amino-3-hydroxy-5-methyl-4-iso-

xazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)

receptor antagonists (mean amplitude: 2664 pA, n = 5; P,0.01

vs. baseline, Mann-Whitney U Test; Figure 3D, G), indicating that

they result from monosynaptic activation of ionotropic glutamate

receptors. As anticipated, the GABAA receptor antagonist

gabazine did not affect EPSCs (mean amplitude: 2283692 pA,

n = 3; P = 0.5 vs. baseline; Mann-Whitney U Test; Figure 3G).

Stimulation of corticostriatal afferents in slice potently engages

feed-forward inhibition, which is mediated by striatal fast spiking

interneurons and SPN collaterals [33]. To determine if corticos-

triatal afferents arising in V1 similarly recruit local inhibitory

circuits in striatum, we recorded light-evoked responses in SPNs

clamped at 0 mV (the reversal potential of ionotropic glutamate

receptors) to reveal inhibitory postsynaptic currents (IPSCs).

Under these conditions, we consistently observed large IPSCs

(mean amplitude: 7466182 pA, n = 9) that were blocked by

gabazine (mean amplitude: 462 pA, n = 3; P,0.01 vs. baseline,

Mann-Whitney U Test), indicating that corticostriatal stimulation

triggers synaptic release of GABA (Figures 3D,G). Consistent with

a disynaptic origin, IPSCs displayed synaptic latencies twice as

long as those of EPSCs (6.360.4 ms, n = 9; P,0.001, Mann

Whitney U Test; Figure 3F) and were eliminated in the presence

A V1 Corticostriatal Projection
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of NBQX and CPP (mean amplitude: 361 pA, n = 4; P,0.01 vs.

baseline, Mann-Whitney U Test; Figure 3D,G).

Discussion

The dorsal striatum plays a crucial role in motor planning,

motivation, as well as procedural and reward learning behaviors

[34–37]. As one of the major sources of excitatory inputs into the

dorsal striatum, cortex provides an important signal that shapes

striatal function and subsequent behavioral outcomes [38,39]. Our

results reveal that, in addition to well-established somatosensory,

auditory and motor corticostriatal afferents, the striatum of mice

also receives strong synaptic inputs from primary visual cortex in

its dorsal-medial quadrant. This finding therefore suggests that

early visual processing may play an important role in visually

guided striatal-based behaviors.

Figure 1. Layer 5 neurons in primary visual cortex project to dorsomedial striatum. A–F. Representative serial coronal sections from the
brain of a Rbp4-Cre mouse virally injected in the primary visual cortex (V1) with an AAV encoding Cre-dependent EGFP to label the cell bodies and
axonal processes of neurons in layer 5 (A). EGFP-labeled axons leave V1 in through the external capsule (B) and innervate various structures including
several layers of the superior colliculus (SC; B) and dorsal lateral geniculate nucleus (DLG; C). V1 axons enter the posterior tail of the striatum
(caudate/putamen, CPu; D) and course throughout the length of the striatum (E) before innervating the anterior dorsomedial quadrant (F). Left,
entire hemisphere stained with DAPI to highlight different brain structures overlaid with the EGFP fluorescence. Middle, detailed view of regions
outlined in white in the corresponding left panel. Right, corresponding images from Paxinos Mouse Brain Atlas highlighting the putative structures
where EGFP fluorescence is detected. Similar results were observed eight different mouse brains. M1; primary motor cortex. S1BF; primary
somatosensory cortex barrel field.
doi:10.1371/journal.pone.0104501.g001

Figure 2. Retrograde labeling of V1 neurons innervating the DMS. A. Coronal striatal section showing the site of red retrobead (RRB)
injection into the dorsomedial striatum (DMS). The section is counterstained with DAPI. B. Coronal brain section of V1 containing RRBs retrogradedly
transported from the dorsomedial striatum. Secondary visual cortex (V2ML and V2L) and secondary auditory cortex (AuD), but not Au1 (primary
auditory cortex) were also labeled. As expected, retrobeads were also detected in putative dopaminergic neurons within the substantia nigra pars
compacta (SNc). C. Detailed view of V1 showing the relative distribution of retrobead-labeled cells bodies across cortical layers. D. Distribution of
retrobead-labeled neurons in V1 across cortical layers. The majority (81%) of labeled cells are situated within layer 5, while only 19% distribute to
layers 2/3. E. Representative coronal section from a Rbp4-Cre;ZsGreen1 brain showing EGFP fluorescence concentrated in the cell bodies of Cre-
containing cortical neurons in layer 5. The section is counterstained with DAPI. F. Detailed view of V1 in a Rbp4-Cre;ZsGreen1 brain injected with RRBs
in the DMS illustrating the extensive overlap between retrobead- and Cre-containing (EGFP-positive) cells in upper layer 5. G. Percentage of all
retrobead-labeled layer 5 neurons that also contain Cre (RRB/EGFP+; 65%, shown in yellow) vs. cells that are only RRB+ (35%, red). H. Coronal brain
section showing red retrobead labeled cells in thalamus. ILT: Intralaminar thalamic nuclei. Scale: 1 mm for panels A, B, E and H; 100 mm for panels C
and F.
doi:10.1371/journal.pone.0104501.g002
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Studies dating back to the 1960s have attempted to map

corticostriatal inputs [1–4,6,12]. Many of these and subsequent

studies investigated whether V1 provides a direct synaptic input

into the striatum, but the existence of this connection has

remained controversial. Several experimental factors might have

contributed to conflicting reports. First, these studies were

performed across a wide variety of species, including monkeys,

rats, rabbits, and hamsters. Second, some labeling methods might

have lacked the sensitivity required to reveal this projection. Third,

the use of focal cortical lesions for mapping corticostriatal inputs

might have presented difficulties in isolating V1 from neighboring

regions. In this study, we employed sensitive labeling, imaging and

optogenetic methods to conclusively demonstrate that V1 estab-

lishes a direct and functionally strong axonal projection into the

DMS in mice. Using viral expression of EGFP in V1 and injection

of retrogradely transported beads in the DMS, we confirmed that

V1 neurons innervate a longitudinal strip of the DMS that lines

the ventricle. In agreement with the distribution of corticostriatal

afferents in other cortical regions, we found that V1 neurons

projecting to the DMS lie in both layer 5 and layers 2/3, with the

overwhelming majority of them in upper layer 5. Moreover, we

used optogenetics and electrophysiological recordings from SPNs

to show that the axons of neocortical L5 neurons in V1

functionally innervate striatum. Our anatomical findings are

supported by studies in rats [5,6,14], as well as in mice (Allen

Institute for Brain Science Mouse Brain Connectivity Atlas, [26]),

which reported a similar projection from V1 that mainly

terminates ipsilaterally in a longitudinal strip of the DMS.

Two broad groups of corticostriatal afferents can be distin-

guished anatomically: intra-telencephalic (IT) neurons mainly

distribute to upper layer 5 and innervate the striatum bilaterally,

while pyramidal tract (PT) neurons rest in lower layer 5 and

extend collaterals ipsilaterally into the striatum, thalamus and

midbrain on their way to the brainstem and spinal cord [29–32].

Although we did not observe V1 axons in the ponds or pyramidal

tract, EGFP+ axons were clearly seen in contralateral striatum and

ipsilateral thalamus and superior colliculus, indicating that the

layer 5 pyramidal neurons labeled in the primary visual cortex of

Rbp4-Cre mice comprise both IT and PT-type cortical cells, in

agreement with previous reports [40]. Several lines of evidence

suggest that the layer 5 neurons in V1 that innervate the DMS

likely belong to the IT group. First, V1 neurons innervate the

DMS bilaterally. Second, most of the Cre+ neurons identified with

a retrograde signal from the DMS (retrobeads) are situated in

upper layer 5 (Figure 2F). Third, our electrophysiological data did

not reveal preferential targeting of dSPNs vs. iSPNs by V1

afferents, in agreement with recent anatomical and functional

studies in mice that did not report significant differences in the

relative innervation of dSPNs and iSPNs by IT-type corticostriatal

neurons in sensory cortices [41,42]. These data therefore indicate

that although Rbp4-Cre mice express Cre in both IT and PT

neurons, the visual cortex neurons that innervate the DMS are

mostly of the IT-type.

Our study also confirms the usefulness of the Rbp4-Cre line for

the study of corticostriatal afferents. We found that it expresses Cre

in the majority of layer 5 neurons that project to the striatum.

Although the fluorescent reporter line used in this study might not

capture all Cre-expressing cells, the roughly one third of unlabeled

corticostriatal neurons in layer 5 likely represent a population of

cells in which Cre is not expressed. Study of these corticostriatal

afferents as well as those originating in layer 2/3 will therefore

require another Cre driver line. Importantly, Cre expression is not

strictly limited to corticostriatal neurons as neurons in the

entorhinal cortex and hippocampus also contain Cre (Figure 2E),

and layer 5 neurons in V1 also extended axonal projections into

the superior colliculus and thalamus (Figure 1). Although it

remains to be determined whether these projections constitute

collaterals of corticostriatal neurons or whether they arise from a

distinct population of layer 5 neurons, this observation indicates

that care should be taken when interpreting the effects of opto-

Figure 3. Stimulation of V1 axons engages glutamatergic and
GABAergic synaptic transmission onto SPNs. A. Representative
high magnification view of the dorsomedial striatum in a Rbp4-Cre;
Drd2-EGFP mouse virally injected in V1 with an AAV encoding Cre-
dependent ChR2-mCherry. Axonal projections from V1 (red) are clearly
seen within the DMS. The section is stained with DAPI (blue) to label cell
bodies. iSPNs are easily identified using EGFP fluorescence (green). A
presumptive dSPN (DAPI+; EGFP2) is also shown. B. Cell-attached
recording from a SPN showing that a 1 ms 473 nm light flash (blue bar)
reliably evokes a single action potential. Three consecutive extracellular
waveforms are overlaid. C. As in B for another SPN recorded in the
whole-cell current-clamp configuration. D. Whole-cell voltage-clamp
traces from a SPN upon optogenetic stimulation (1 ms, blue bar) of
ChR2-expressing V1 axons. EPSCs (black) were recorded at ECl =
270 mV, while IPSCs (red) were recorded at 0 mV (the reversal potential
for ionotropic glutamate receptor mediated currents). Dashed gray lines
mark the onset of both currents and highlight the delayed onset of IPSCs
relative to EPSCs. Both EPSC and IPSC were eliminated after bath
application of the glutamate receptor antagonists NBQX and CPP (both
at 10 mM; gray and pink lines, respectively), confirming the disynaptic
origin of IPSCs. E. Mean (6 s.e.m) peak EPSC amplitude in dSPNs (blue)
and iSPNs (green). F. Mean (6 s.e.m) latency from flash onset to current
onset of EPSCs (black) and IPSCs (red). G. Mean (6 s.e.m) EPSC (black) and
IPSC (red) amplitudes. Asterisk represents statistical significance, P,0.05
vs. baseline amplitude. Data in E–G represent mean 6 s.e.m. Number of
recordings are indicated in parentheses.
doi:10.1371/journal.pone.0104501.g003
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and pharmacogenetic manipulations of these neurons on behavior.

Nevertheless, the Rbp4-Cre transgenic line should prove useful in

studying general principles of corticostriatal transmission and

circuitry.

Together, our findings indicate that corticostriatal inputs

originating in primary visual cortex can efficiently recruit neuronal

circuits in defined regions of the striatum, suggesting that early

visual processing might contribute to corticostriatal synaptic

plasticity as well as visually guided motor behaviors.
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