Publications

2020
Vormstein-Schneider D, Lin JD, Pelkey KA, Chittajallu R, Guo B, Arias-Garcia MA, Allaway K, Sakopoulos S, Schneider G, Stevenson O, et al. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature neuroscience. 2020;23 (12) :1629–1636.Abstract
Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.
[PDF]
Maglie E, Pisanello M, Pisano F, Balena A, Bianco M, Spagnolo B, Sileo L, Sabatini BL, Vittorio MD, Pisanello F. Ray tracing models for estimating light collection properties of microstructured tapered optical fibers for optical neural interfaces. Optics Letters. 2020;45 (14) :3856-3859 . [PDF]
Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL. Anatomical and single-cell transcriptional profiling of the murine habenular complex. Elife. 2020;11 (9). [PDF]
2019
Peixoto RT, Chantranupong L, Hakim R, Levasseur J, Wang W, Merchant T, Gorman K, Budnik B, Sabatini BL. Abnormal Striatal Development Underlies the Early Onset of Behavioral Deficits in Shank3B Mice. Cell Rep. 2019;29 (7) :2016-2027.e4.Abstract
The neural substrates and pathophysiological mechanisms underlying the onset of cognitive and motor deficits in autism spectrum disorders (ASDs) remain unclear. Mutations in ASD-associated SHANK3 in mice (Shank3B-/-) result in the accelerated maturation of corticostriatal circuits during the second and third postnatal weeks. Here, we show that during this period, there is extensive remodeling of the striatal synaptic proteome and a developmental switch in glutamatergic synaptic plasticity induced by cortical hyperactivity in striatal spiny projection neurons (SPNs). Behavioral abnormalities in Shank3B-/- mice emerge during this stage and are ameliorated by normalizing excitatory synapse connectivity in medial striatal regions by the downregulation of PKA activity. These results suggest that the abnormal postnatal development of striatal circuits is implicated in the onset of behavioral deficits in Shank3B-/- mice and that modulation of postsynaptic PKA activity can be used to regulate corticostriatal drive in developing SPNs of mouse models of ASDs and other neurodevelopmental disorders.
Pisano F, Pisanello M, Lee SJ, Lee J, Maglie E, Balena A, Sileo L, Spagnolo B, Bianco M, Hyun M, et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat Methods. 2019;16 (11) :1185-1192.Abstract
Fiber photometry is increasingly utilized to monitor fluorescent sensors of neural activity in the brain. However, most implementations are based on flat-cleaved optical fibers that can only interface with shallow tissue volumes adjacent to the fiber. We exploit modal properties of tapered optical fibers (TFs) to enable light collection over an extent of up to 2 mm of tissue and multisite photometry along the taper. Using a single TF, we simultaneously observed distinct dopamine transients in dorsal and ventral striatum in freely moving mice performing a simple, operant conditioning task. Collection volumes from TFs can also be engineered in both shape and size by microstructuring the nonplanar surface of the taper, to optically target multiple sites not only in the deep brain but, in general, in any biological system or organ in which light collection is beneficial but challenging because of light scattering and absorption.
Mandelbaum G, Taranda J, Haynes TM, Hochbaum DR, Huang KW, Hyun M, Venkataraju KU, Straub C, Wang W, Robertson K, et al. Distinct Cortical-Thalamic-Striatal Circuits through the Parafascicular Nucleus. Neuron. 2019;102 (3) :636-652.e7.Abstract
The thalamic parafascicular nucleus (PF), an excitatory input to the basal ganglia, is targeted with deep-brain stimulation to alleviate a range of neuropsychiatric symptoms. Furthermore, PF lesions disrupt the execution of correct motor actions in uncertain environments. Nevertheless, the circuitry of the PF and its contribution to action selection are poorly understood. We find that, in mice, PF has the highest density of striatum-projecting neurons among all sub-cortical structures. This projection arises from transcriptionally and physiologically distinct classes of PF neurons that are also reciprocally connected with functionally distinct cortical regions, differentially innervate striatal neurons, and are not synaptically connected in PF. Thus, mouse PF contains heterogeneous neurons that are organized into parallel and independent associative, limbic, and somatosensory circuits. Furthermore, these subcircuits share motifs of cortical-PF-cortical and cortical-PF-striatum organization that allow each PF subregion, via its precise connectivity with cortex, to coordinate diverse inputs to striatum.
Pisano F, Pisanello M, Sileo L, Qualtieri A, Sabatini BL, Vittorio MD, Pisanello F. Focused ion beam nanomachining of tapered optical fibers for patterned light delivery. Microelectron Eng. 2019;195 :41-49.Abstract
With the advent of optogenetic techniques, a major need for precise and versatile light-delivery techniques has arisen from the neuroscience community. Driven by this demand, research on innovative illuminating devices has opened previously inaccessible experimental paths. However, tailoring light delivery to functionally and anatomically diverse brain structures still remains a challenging task. We progressed in this endeavor by micro-structuring metal-coated tapered optical fibers and exploiting the resulting mode-division multiplexing/demultiplexing properties. To do this, a non-conventional Focused Ion Beam (FIB) milling method was developed in order to pattern the non-planar surface of the taper around the full 360°, by equipping the FIB chamber with a micromanipulation system. This led us to develop three novel typologies of micro-structured illuminating tools: (a) a tapered fiber that emits light from a narrow slot of adjustable length; (b) a tapered fiber that emits light from four independently addressable optical windows; (c) a tapered fiber that emits light from an annular aperture with 360° symmetry. The result is a versatile technology enabling reconfigurable light-delivery that can be tailored to specific experimental needs.
Tuesta LM, Djekidel MN, Chen R, Lu F, Wang W, Sabatini BL, Zhang Y. In vivo nuclear capture and molecular profiling identifies Gmeb1 as a transcriptional regulator essential for dopamine neuron function. Nat Commun. 2019;10 (1) :2508.Abstract
Midbrain dopamine (mDA) neurons play a central role in reward signaling and are widely implicated in psychiatric and neurodegenerative disorders. To understand how mDA neurons perform these functions, it is important to understand how mDA-specific genes are regulated. However, cellular heterogeneity in the mammalian brain presents a major challenge to obtaining this understanding. To this end, we developed a virus-based approach to label and capture mDA nuclei for transcriptome (RNA-Seq), and low-input chromatin accessibility (liDNase-Seq) profiling, followed by predictive modeling to identify putative transcriptional regulators of mDA neurons. Using this method, we identified Gmeb1, a transcription factor predicted to regulate expression of Th and Dat, genes critical for dopamine synthesis and reuptake, respectively. Gmeb1 knockdown in mDA neurons resulted in downregulation of Th and Dat, as well as in severe motor deficits. This study thus identifies Gmeb1 as a master regulator of mDA gene expression and function, and provides a general method for identifying cell type-specific transcriptional regulators.
Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, Sabatini BL. Molecular and anatomical organization of the dorsal raphe nucleus. Elife. 2019;8.Abstract
The dorsal raphe nucleus (DRN) is an important source of neuromodulators and has been implicated in a wide variety of behavioral and neurological disorders. The DRN is subdivided into distinct anatomical subregions comprised of multiple cell types, and its complex cellular organization has impeded efforts to investigate the distinct circuit and behavioral functions of its subdomains. Here we used single-cell RNA sequencing, in situ hybridization, anatomical tracing, and spatial correlation analysis to map the transcriptional and spatial profiles of cells from the mouse DRN. Our analysis of 39,411 single-cell transcriptomes revealed at least 18 distinct neuron subtypes and 5 serotonergic neuron subtypes with distinct molecular and anatomical properties, including a serotonergic neuron subtype that preferentially innervates the basal ganglia. Our study lays out the molecular organization of distinct serotonergic and non-serotonergic subsystems, and will facilitate the design of strategies for further dissection of the DRN and its diverse functions.
Lee SJ, Chen Y, Lodder B, Sabatini BL. Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry. Front Neurosci. 2019;13 :766.Abstract
All cells respond to extracellular signals by altering their intracellular biochemical state. In neurons, such signaling regulates many aspects of cell and synapse biology and induces changes that are thought to be important for nervous system development, its adaptation in the face of a changing environment, and ongoing homeostatic maintenance. Although great advances have been made in developing novel fluorescent reporters of intracellular signaling as well as in methods of fluorescence detection for use in freely moving animals, these approaches have generally not been combined. Thus, we know relatively little about how the intracellular biochemical state of neurons, and other cell classes, is dynamically regulated during animals' behavior. Here we describe a single multi-mode fiber based fluorescence lifetime photometry system (FLiP) designed to monitor the state of fluorescence reporters of biochemical state in freely moving animals. We demonstrate the utility of FLiP by monitoring the lifetime of FLIM-AKAR, a genetically encoded fluorescent reporter of PKA phosphorylation, in populations of direct and indirect pathway striatal projection neurons in mice receiving food rewards. We find that the activity of PKA in each pathway is transiently regulated by reward acquisition, with PKA phosphorylation being enhanced and repressed in direct and indirect pathway neurons, respectively. This study demonstrates the power of FLiP to detect changes in biochemical state induced by naturalistic experiences in behaving animals.
Piatkevich KD, Bensussen S, Tseng H-A, Shroff SN, Lopez-Huerta VG, Park D, Jung EE, Shemesh OA, Straub C, Gritton HJ, et al. Population imaging of neural activity in awake behaving mice. Nature. 2019;574 (7778) :413-417.Abstract
A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here we describe a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and is compatible with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable several-fold over previously published fully genetically encoded reagents1-8. Under conventional one-photon microscopy, SomArchon enables the routine population analysis of around 13 neurons at once, in multiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake, behaving mice. Using SomArchon, we detected both positive and negative responses of striatal neurons during movement, as previously reported by electrophysiology but not easily detected using modern calcium imaging techniques9-11, highlighting the power of voltage imaging to reveal bidirectional modulation. We also examined how spikes relate to the subthreshold theta oscillations of individual hippocampal neurons, with SomArchon showing that the spikes of individual neurons are more phase-locked to their own subthreshold theta oscillations than to local field potential theta oscillations. Thus, SomArchon reports both spikes and subthreshold voltage dynamics in awake, behaving mice.
Pisanello M, Pisano F, Hyun M, Maglie E, Balena A, Vittorio MD, Sabatini BL, Pisanello F. The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. Front Neurosci. 2019;13 :82.Abstract
Fiber photometry is used to monitor signals from fluorescent indicators in genetically-defined neural populations in behaving animals. Recently, fiber photometry has rapidly expanded and it now provides researchers with increasingly powerful means to record neural dynamics and neuromodulatory action. However, it is not clear how to select the optimal fiber optic given the constraints and goals of a particular experiment. Here, using combined confocal/2-photon microscope, we quantitatively characterize the fluorescence collection properties of various optical fibers in brain tissue. We show that the fiber size plays a major role in defining the volume of the optically sampled brain region, whereas numerical aperture impacts the total amount of collected signal and, marginally, the shape and size of the collection volume. We show that ~80% of the effective signal arises from 105 to 106 μm3 volume extending ~200 μm from the fiber facet for 200 μm core optical fibers. Together with analytical and ray tracing collection maps, our results reveal the light collection properties of different optical fibers in brain tissue, allowing for an accurate selection of the fibers for photometry and helping for a more precise interpretation of measurements in terms of sampled volume.
Peixoto RT, Chantranupong L, Hakim R, Levasseur J, Wang W, Merchant T, Gorman K, Budnik B, Sabatini BL. Abnormal Striatal Development Underlies the Early Onset of Behavioral Deficits in Shank3B-/- Mice. Cell Reports. 2019;12 (29). [PDF]
Piatkevich KD, Bensussen S, Tseng HA, Shroff SN, Lopez-Huerta VG, Park D, Jung EE, Shemesh OA, Straub C, Gritton HJ, et al. Population imaging of neural activity in awake behaving mice. Nature. 2019;574. [PDF]
Pisano F, Pisanello M, Lee SJ, Lee J, Maglie E, Balena A, Sileo L, Spagnolo B, Bianco M, Hyun M, et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nature Methods. 2019;16 (11). [PDF]
Lee SJ, Chen Y, Lodder B, BL S. Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry. Frontiers in Neuroscience. 2019;13. [PDF]
Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, Sabatini BL. Molecular and anatomical organization of the dorsal raphe nucleus. Elife. 2019;14 (8). [PDF]
Pisano F, Pisanello M, Sileo L, Qualtieri A, Sabatini BL, Vittorio DM, Pisanello F. Focused ion beam nanomachining of tapered optical fibers for patterned light delivery. Microelectronic Engineering. 2019;195. [PDF]
Tuesta LM, Djekidel MN, Chen R, Lu F, Wang W, Sabatini BL, Zhang Y. In vivo nuclear capture and molecular profiling identifies Gmeb1 as a transcriptional regulator essential for dopamine neuron function. Nature Communications. 2019;10 (1). [PDF]
Mandelbaum G, Taranda J, Haynes TM, Hochbaum DR, Huang KW, Hyun M, Venkataraju UK, Straub C, Wang W, Robertson K, et al. Distinct Cortical-Thalamic-Striatal Circuits through the Parafascicular Nucleus. Neuron. 2019;102. [PDF]

Pages